Journal of Solid State Electrochemistry

, Volume 14, Issue 6, pp 951–956 | Cite as

Effect of MWCNT on the performances of the rounded shape natural graphite as anode material for lithium-ion batteries

  • Sang-Young Lee
  • Jong Hyeok Park
  • Pilkyu Park
  • Jong Hun Kim
  • Soonho Ahn
  • Kyeong-Jik Lee
  • Hyung-Dong Lee
  • Jae-Sung Park
  • Deok-Hyeong Kim
  • Yeon Uk Jeong
Original Paper

Abstract

Multi-walled carbon nanotube (MWCNT) with bundle-type morphology was introduced as a new functional additive working as a particle connector or an expansion absorber in the anodes of lithium-ion batteries. By controlling the dispersion process, the MWCNT bundles were successfully divided and dispersed between the host particles. The composite anode consisting of rounded shape natural graphite and 2 wt.% of MWCNT exhibited the capacity of 300 mAh g−1 at 3 C rate and excellent cyclability. The well-dispersed MWCNT bundles made it possible to relieve the large strains developed at high discharge C rates and to keep the electrical contact between the host particles during repeated intercalation/deintercalation. This study has also emphasized that when high C-rate applications of lithium-ion batteries are targeted, it is important to get optimum content of MWCNT as well as uniform dispersion of their bundles in the composite anodes.

References

  1. 1.
    Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T (1995) J Electrochem Soc 142:1041CrossRefGoogle Scholar
  2. 2.
    Yoshio M, Eang H, Fukuda K (2003) Angew Chem Int Ed 42:4203CrossRefGoogle Scholar
  3. 3.
    Ohzeki K, Saito Y, Golman B, Shinohara K (2005) Carbon 43:1673CrossRefGoogle Scholar
  4. 4.
    Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147:2845CrossRefGoogle Scholar
  5. 5.
    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480CrossRefGoogle Scholar
  6. 6.
    Wang H, Hobbie EK (2003) Langmuir 19:3091CrossRefGoogle Scholar
  7. 7.
    Maeda Y, Kimura SI, Hirashima Y, Kanda M, Lian Y, Wakahara T, Akasaka T, Hasegawa T, Tokumoto H, Shimizu T, Kataura H, Miyauchi Y, Maruyama S, Kobayashi K, Nagase S (2004) J Phys Chem B 108:18395CrossRefGoogle Scholar
  8. 8.
    Islam MF, Rojas E, Bergey DM, Johson AT, Yodh AG (2003) Nano Lett 3:269CrossRefGoogle Scholar
  9. 9.
    Vaisman L, Marom G, Wagner HD (2006) Adv Funct Mater 16:357CrossRefGoogle Scholar
  10. 10.
    Stephenson JJ, Hudson JL, Azad S, Tour JM (2006) Chem Mater 18:374CrossRefGoogle Scholar
  11. 11.
    Sakamoto JS, Dunn B (2002) J Electrochem Soc 149:A26CrossRefGoogle Scholar
  12. 12.
    Sheem K, Lee YH, Lim HS (2006) J Power Sources 158:1425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sang-Young Lee
    • 1
  • Jong Hyeok Park
    • 2
  • Pilkyu Park
    • 3
  • Jong Hun Kim
    • 3
  • Soonho Ahn
    • 3
  • Kyeong-Jik Lee
    • 4
  • Hyung-Dong Lee
    • 4
  • Jae-Sung Park
    • 5
  • Deok-Hyeong Kim
    • 6
  • Yeon Uk Jeong
    • 6
  1. 1.Department of Chemical EngineeringKangwon National UniversityChuncheonSouth Korea
  2. 2.Department of Chemical EngineeringSungkyunkwan UniversitySuwonSouth Korea
  3. 3.Batteries Research & DevelopmentLG ChemDaejeonSouth Korea
  4. 4.SODIFF Advanced Materials Co., Ltd.YeongjuSouth Korea
  5. 5.Vitzrocell Co., Ltd./R & D CenterYesanSouth Korea
  6. 6.School of Materials Science and EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations