Skip to main content

Advertisement

Log in

An aqueous rechargeable lithium battery based on doping and intercalation mechanisms

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An aqueous rechargeable lithium battery (ARLB) using an electroactive polymer, polypyrrole (PPy), as a negative electrode; a lithium ion intercalation compound LiCoO2 as a positive electrode; and Li2SO4 aqueous solution as an electrolyte and its working mechanism are described. The charge/discharge process is associated with the doping/un-doping of anions at the negative electrode and intercalation/deintercalation of lithium ions at the positive electrode. The average output voltage of the PPy//LiCoO2 battery is about 0.85 V. This battery exhibits excellent cycling performance. This new technology solves the major problem of poor cycling life of ARLBs and will provide a new strategy to explore advanced energy storage and conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu YP, Dai XN, Ma JQ, Cheng YJ (2004) Lithium ion batteries: practice & applications. Chemical Industry, Beijing

    Google Scholar 

  2. Van der Linden S (2006) Energy 31:3446. doi:10.1016/j.energy.2006.03.016

    Article  Google Scholar 

  3. Pietro BD, Patriarca M, Scrosati B (1982) J Power Sources 8:289. doi:10.1016/0378-7753(82)80062-1

    Article  Google Scholar 

  4. Whittingham MS (1976) Science 192:1126. doi:10.1126/science.192.4244.1126

    Article  CAS  Google Scholar 

  5. Li W, Dahn JR, Wainwright D (1994) Science 264:1115. doi:10.1126/science.264.5162.1115

    Article  CAS  Google Scholar 

  6. Glanz J (1994) Science 264:1084. doi:10.1126/science.264.5162.1084

    Article  Google Scholar 

  7. Wang GJ, Fu LJ, Zhao NH, Yang LC, Wu YP, Wu HQ (2007) Angew Chem Int Ed 46:295. doi:10.1002/anie.200603699

    Article  Google Scholar 

  8. Wang GJ, Zhang HP, Fu LJ, Wang B, Wu YP (2007) Electrochem Commun 9:1873. doi:10.1016/j.elecom.2007.04.017

    Article  CAS  Google Scholar 

  9. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP (2008) ChemPhysChem 9:2299. doi:10.1002/cphc.200800424

    Article  CAS  Google Scholar 

  10. Stejskal J, Omastová M, Fedorova S, Prokeš J, Trchová M (2003) Polymer (Guildf) 44:1353. doi:10.1016/S0032-3861(02)00906-0

    Article  CAS  Google Scholar 

  11. Huang K, Wan MX, Long YZ, Chen ZJ, Wei Y (2005) Synth Met 155:495. doi:10.1016/j.synthmet.2005.06.013

    Article  CAS  Google Scholar 

  12. Blinova NV, Stejskal J, Trchova M, Prokes J, Omastova M (2007) Eur Polym J 43:2331. doi:10.1016/j.eurpolymj.2007.03.045

    Article  CAS  Google Scholar 

  13. Eapen A, Joe IH, Aruldhas G (1997) J Solid State Chem 133:423. doi:10.1006/jssc.1997.7498

    Article  CAS  Google Scholar 

  14. Novak P, Muller K, Santhanam K, Haas O (1997) Chem Rev 97:207. doi:10.1021/cr941181o

    Article  CAS  Google Scholar 

  15. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Adv Mater 10:725. doi:10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  16. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783. doi:10.1016/0025-5408(80)90012-4

    Article  CAS  Google Scholar 

  17. Markevich E, Salitra G, Aurbach D (2005) Electrochem Commun 7:1298. doi:10.1016/j.elecom.2005.09.010

    Article  CAS  Google Scholar 

  18. Wang GJ, Qu QT, Wang B, Zhang HP, Wu YP, Holze R (2009) Electrochim Acta 54:1199. doi:10.1016/j.electacta.2008.08.047

    Article  CAS  Google Scholar 

  19. Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochem Commun 11:247. doi:10.1016/j.elecom.2008.11.015

    Article  CAS  Google Scholar 

  20. Panero S, Spila E, Scrosati B (1996) J Electrochem Soc 143:L29. doi:10.1149/1.1836446

    Article  CAS  Google Scholar 

  21. Feldberg SW (1984) J Am Chem Soc 106:4671. doi:10.1021/ja00329a004

    Article  CAS  Google Scholar 

  22. Wang GJ, Fu LJ, Wang B, Zhao NH, Wu YP, Holze R (2008) J Appl Electrochem 38:589

    Google Scholar 

  23. Wang GJ, Zhao NH, Yang LC, Wu YP, Holze R, Wu HQ (2007) Electrochim Acta 52:4911. doi:10.1016/j.electacta.2007.01.051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from National Basic Research Program of China (973 Program No: 2007CB209702) and Alexander von Humboldt Foundation (Institutional Program) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. P. Wu or R. Holze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G.J., Yang, L.C., Qu, Q.T. et al. An aqueous rechargeable lithium battery based on doping and intercalation mechanisms. J Solid State Electrochem 14, 865–869 (2010). https://doi.org/10.1007/s10008-009-0869-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0869-3

Keywords

Navigation