Skip to main content
Log in

A study of the electrocatalytic oxidation of methanol on a nickel–salophen-modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel–salophen-modified glassy carbon electrodes prepared by transferring one drop of Ni–salophen complex solution on the electrode surface. This modified electrode has been used for the electrocatalytic oxidation of methanol in alkaline solutions with various methods such as cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The electrooxidation was observed as large anodic peaks, and early stages of the cathodic direction of potential sweep around 20 mV vs. Ag|AgCl|KClsat. A mechanism based on the electrochemical generation of Ni (Ш) active sites and their subsequent consumptions by methanol have been discussed. EIS studies were employed to unveil the charge transfer rate as well as the electrical characteristics of the catalytic surface. For the electrochemical oxidation of methanol at 5.0 M concentration, charge transfer resistance of nearly 0.936 kΩ was obtained, while the resistance of the electrocatalyst layer was about 111.6 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39. doi:10.1016/S0022-0728(71)80040-2

    Article  CAS  Google Scholar 

  2. Elshafei AA (1999) J Electroanal Chem 471:89. doi:10.1016/S0022-0728(99)00235-1

    Article  CAS  Google Scholar 

  3. Burstein GT, Barnett CJ, Kucernak AR, Williams KR (1997) Catal Today 38:425. doi:10.1016/S0920-5861(97)00107-7

    Article  CAS  Google Scholar 

  4. Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) J Power Sources 86:111. doi:10.1016/S0378-7753(99)00407-3

    Article  CAS  Google Scholar 

  5. Schultz T, Zhou S, Sundmacher K (2001) Chem Eng Technol 24:12. doi:10.1002/1521-4125(200112)24:12<1223::AID-CEAT1223>3.0.CO;2-T

    Article  CAS  Google Scholar 

  6. Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells (Weinh) 1:5. doi:10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G

    Article  CAS  Google Scholar 

  7. Arico AS, Crety P, Baglio V, Modica E, Antonucci V (2000) J Power Sources 91:202. doi:10.1016/S0378-7753(00)00471-7

    Article  CAS  Google Scholar 

  8. Dohle H, Divisek J, Jung R (2000) J Power Sources 86:469. doi:10.1016/S0378-7753(99)00456-5

    Article  CAS  Google Scholar 

  9. Baldauf M, Preidel W (2001) J Appl Electrochem 31:781. doi:10.1023/A:1017583226080

    Article  CAS  Google Scholar 

  10. Nonaka H, Matsumura Y (2002) J Electroanal Chem 520:101. doi:10.1016/S0022-0728(01)00752-5

    Article  CAS  Google Scholar 

  11. Green CL, Kucernak A (2002) J Phys Chem 106B:106

    Google Scholar 

  12. Arico AS, Poltarzewski Z, Kim H, Morana A, Giordano N, Antonucci V (1995) J Power Sources 55:159. doi:10.1016/0378-7753(94)02178-6

    Article  CAS  Google Scholar 

  13. Arico AS, Creti P, Giordano N, Antonucci V, Antonucci PL, Chuvilin A (1996) J Appl Electrochem 26:959. doi:10.1007/BF00242049

    Article  CAS  Google Scholar 

  14. Antolini E (2003) Mater Chem Phys 78:563. doi:10.1016/S0254-0584(02)00389-9

    Article  CAS  Google Scholar 

  15. Wen TC, Lin SM, Tsai JM (1994) J Appl Electrochem 24:233

    CAS  Google Scholar 

  16. Fan C, Piron DL, Sleb A, Paradis P (1994) J Electrochem Soc 141:382. doi:10.1149/1.2054736

    Article  CAS  Google Scholar 

  17. Raj IA, Vasu KI (1990) J Appl Electrochem 20:32. doi:10.1007/BF01012468

    Article  CAS  Google Scholar 

  18. Casadei MA, Pletcher D (1988) Electrochim Acta 33:117. doi:10.1016/0013-4686(88)80042-2

    Article  Google Scholar 

  19. Vertes G, Horanyi G, Nagi F (1971) Acta Chir Acad Sci Hung 68:145

    Google Scholar 

  20. Berchmans S, Gomathi H, Rao GP (1995) J Electroanal Chem 394:267. doi:10.1016/0022-0728(95)04099-A

    Article  Google Scholar 

  21. Fleischmann M, Korinek K, Pletcher D (1972)) J Chem Soc, Perkin Trans 2:1396. doi:10.1039/p29720001396

    Google Scholar 

  22. Greef R, Peter R, Pletcher D, Robinson J (1990) Instrumental Methods in Electrochemistry Ellis Horwood Chichster

  23. Galus Z (1976) Fundamentals of Electrochemical Analysis. Ellis Horwood, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan Bakhsh Raoof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoof, J.B., Golikand, A.N. & Baghayeri, M. A study of the electrocatalytic oxidation of methanol on a nickel–salophen-modified glassy carbon electrode. J Solid State Electrochem 14, 817–822 (2010). https://doi.org/10.1007/s10008-009-0859-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0859-5

Keywords

Navigation