Skip to main content

Synthesis and characterization of polypyrrole–magnetite–vitamin B12 hybrid composite electrodes

Abstract

In this study vitamin B12 covered magnetite nanoparticles have been incorporated into a conducting polypyrrole. This polymer was electrochemically synthesized in the presence of the B12-coated magnetite. The adsorption of B12 was demonstrated by the decrease in absorbance of the vitamin in the supernatant liquid after B12 has been in contact with magnetite sol overnight. The composition of the layers was studied by the electrochemical quartz crystal microbalance technique during the polymerization. The slope of the mass change–charge curves indicate the incorporation of 27 m/m% magnetite and 15 m/m% B12. The redox transformation of the film in monomer- and nanoparticle-free solutions was also investigated by this method and the difference in the virtual molar masses of the moving species was evidenced. The morphology and the composition of the layers were characterized by scanning electron microscopy combined with energy dispersive X-ray microanalysis measurements, which latter proved the successful incorporation of the magnetic and bio-active components. The electrochemical behavior of the films unambiguously showed the complex redox activity of the composites and the current surplus were quantified by the redox capacity of the layers. These data show the doubling of the redox capacity in case of the hybrid material compared to the neat polymer. The successful enrichment of B12 can be exploited in the recently evidenced redox mediation process performed by a PPy/B12 film.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Gomez-Romero P (2001) Adv Mater 13:163. doi:10.1002/1521-4095(200102) 13:3<163::AID-ADMA163>3.0.CO;2-U

    Article  CAS  Google Scholar 

  2. Kickelbick G (2003) Prog Polym Sci 28:83. doi:10.1016/S0079-6700(02)00019-9

    Article  CAS  Google Scholar 

  3. Gangopadhyay R, De A (2000) Chem Mater 12:608. doi:10.1021/cm990537f

    Article  CAS  Google Scholar 

  4. Vago ER, Calvo EJ (1992) J Electroanal Chem 339:41. doi:10.1016/0022-0728(92)80444-9

    Article  CAS  Google Scholar 

  5. Zhao G, Xu JJ, Chen HY (2006) Electrochem Commun 8:148. doi:10.1016/j.elecom.2005.11.001

    Article  CAS  Google Scholar 

  6. Manuel J, Kim JK, Ahn JH et al (2008) J Power Sources 184:527. doi:10.1016/j.jpowsour.2008.02.079

    Article  CAS  Google Scholar 

  7. Kwon CW, Poquet A, Mornet S et al (2002) Electrochem Commun 4:197. doi:10.1016/S1388-2481(02)00250-3

    Article  CAS  Google Scholar 

  8. Mallouki M, Sarrazin C, Simon P et al (2007) J Solid State Electrochem 11:398. doi:10.1007/s10008-006-0161-8

    Article  CAS  Google Scholar 

  9. Katz E, Willner I (2004) Angew Chem Int Ed 45:6042. doi:10.1002/anie.200400651

    Article  Google Scholar 

  10. Garcia B, Lamzoudi A, Deslouis C et al (2002) J Electrochem Soc 149:B560. doi:10.1149/1.1517581

    Article  CAS  Google Scholar 

  11. Bidan G, Jarjayes O, Fruchart F et al (1994) Adv Mater 6:152. doi:10.1002/adma.19940060213

    Article  CAS  Google Scholar 

  12. Jarjayes O, Fries PH, Bidan G (1995) Synth Met 69:343. doi:10.1016/0379-6779(94)02477-G

    Article  CAS  Google Scholar 

  13. Janaky C, Visy C, Berkesi O et al (2009) J Phys Chem C 113:1352. doi:10.1021/jp809345b

    Article  CAS  Google Scholar 

  14. Pailleret A, Hien NTL, Deslouis C (2007) J Solid State Electrochem 11:1013. doi:10.1007/s10008-007-0262-z

    Article  CAS  Google Scholar 

  15. Giuseppi-Elie A, Wallace GG, Matsue T (1998) In: Skotheim TA, Elsenbauer RL, Reynolds JR (Eds) Handbook of Conducting Polymers, p. 963, Marcel Dekker, New York

  16. Cosnier S (1999) Biosens Bioelectron 14:443. doi:10.1016/S0956-5663(99)00024-X

    Article  CAS  Google Scholar 

  17. Ahuja T, Mir IA, Kumar D et al (2007) Biomaterials 28:791. doi:10.1016/j.biomaterials.2006.09.046

    Article  CAS  Google Scholar 

  18. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochim Acta 51:6025. doi:10.1016/j.electacta.2005.11.052

    Article  CAS  Google Scholar 

  19. Brown KL (2005) Chem Rev 105:2075. doi:10.1021/cr030720z

    Article  CAS  Google Scholar 

  20. Shimakoshi H, Nakazato A, Hayashi T et al (2001) J Electroanal Chem 507:170. doi:10.1016/S0022-0728(01)00418-1

    Article  CAS  Google Scholar 

  21. Fraga R, Correia JP, Abrantes LM et al (2005) Electrochim Acta 50:1653. doi:10.1016/j.electacta.2004.10.059

    Article  CAS  Google Scholar 

  22. Visy C, Csízi I, Kriván E (2007) Electrochim Acta 53:1190. doi:10.1016/j.electacta.2006.12.069

    Article  Google Scholar 

  23. Illés E, Tombácz E (2003) Colloids Surf A Physicochem Eng Asp 230:99. doi:10.1016/j.colsurfa.2003.09.017

    Article  Google Scholar 

  24. Illés E, Tombácz E (2006) J Colloid Interface Sci 295:115. doi:10.1016/j.jcis.2005.08.003

    Article  Google Scholar 

  25. Tombácz E, Illés E, Majzik A et al (2007) Croat Chem Acta 80:503

    Google Scholar 

  26. Skompska M, Jackson A, Hillman AR (2000) PCCP 20:4748

    Google Scholar 

  27. Goo Z, Zhu G, Qiu S et al (2005) Carbon 43:2344. doi:10.1016/j.carbon.2005.04.014

    Article  Google Scholar 

  28. Nagarajan N, Zhitomirsky I (2006) J Appl Electrochem 36:1399. doi:10.1007/s10800-006-9232-x

    Article  CAS  Google Scholar 

  29. Wang SY, Ho KC, Kuo SL et al (2006) J Electrochem Soc 153:A75. doi:10.1149/1.2131820

    Article  CAS  Google Scholar 

  30. Lexa D, Saveant JM (1983) Acc Chem Res 16:235. doi:10.1021/ar00091a001

    Article  CAS  Google Scholar 

  31. Yang N, Wan Q, Wang X (2005) Electrochim Acta 50:2175. doi:10.1016/j.electacta.2004.09.026

    Article  CAS  Google Scholar 

  32. Markusova K, Fedurco M (1991) Anal Chim Acta 248:109. doi:10.1016/S0003-2670(00)80875-2

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (2001) Electrochemical Methods, Fundamentals and Applications, 2nd edn. Wiley, New York

    Google Scholar 

  34. Weidlich C, Mangold KM, Juttner K (2005) Electrochim Acta 50:1547. doi:10.1016/j.electacta.2004.10.032

    Article  CAS  Google Scholar 

  35. Plieth W, Bund A, Rammelt U et al (2006) Electrochim Acta 51:2366. doi:10.1016/j.electacta.2005.03.087

    Article  CAS  Google Scholar 

  36. Visy C, Janaky C, Krivan E (2005) J Solid State Electrochem 9:330. doi:10.1007/s10008-005-0661-y

    Article  CAS  Google Scholar 

  37. Xie Q, Kuwabata S, Yoneyama H (1997) J Electroanal Chem 420:219. doi:10.1016/S0022-0728(96)04777-8

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the Hungarian National Office of Research and Technology (NKTH) and the Agency for Research Fund Management and Research Exploitation (KPI) no. DAMEC-09/2006 as well as from the Hungarian National Research Fund (OTKA no. K72989) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Visy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 8

Comparison of the cyclic voltammograms of the nanocomposite layers prepared at different magnetite concentration, at a sweep rate of 50 mV s−1. (DOC 164 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janaky, C., Endrodi, B., Hajdu, A. et al. Synthesis and characterization of polypyrrole–magnetite–vitamin B12 hybrid composite electrodes. J Solid State Electrochem 14, 339 (2010). https://doi.org/10.1007/s10008-009-0827-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-009-0827-0

Keywords

  • Conducting polymer
  • Polypyrrole
  • Bio-nanocomposite
  • Magnetite
  • Vitamin B12