Skip to main content
Log in

A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report here on the synthesis of homogenous, well-adherent composite film of Fe2O3/SiO2, up to 7 μm thick, on the titanium substrate by anodic treatment optimized for an aqueous suspension of K2O·SiO2 and Fe2O3 powder under galvanostatic conditions. The end products were characterized by scanning electron microscopy, energy-dispersive X-ray, X-ray powder diffractometry, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy, concluding that the formation of composite coating at the SiO2 to Fe2O3 ratio of approximately 1:1 proceeds just after formation of a thin TiO2 layer with Fe2O3 particle inclusions without transformations via an electrophoresis deposition of negatively charged Fe2O3 species enveloped by silica ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Široky K, Jirešova J, Hudec LO (1994) Thin Solid Films 245:211. doi:10.1016/0040-6090(94)90902-4

    Article  Google Scholar 

  2. Matijević E, Scheiner P (1978) J Colloid Interface Sci 63:509. doi:10.1016/S0021-9797(78)80011-3

    Article  Google Scholar 

  3. Faust B, Hoffmann M, Bachnemann D (1989) J Phys Chem 93:6371. doi:10.1021/j100354a021

    Article  CAS  Google Scholar 

  4. Gong C, Chen D, Jiao X, Wang Q (2002) J Mater Chem 12:1844. doi:10.1039/b201243j

    Article  CAS  Google Scholar 

  5. Baltes M, Mathieu M, Vansant EF (2002) J Phys Chem B 106:13146. doi:10.1021/jp0211640

    Article  Google Scholar 

  6. Park S, Lim S, Choi H (2006) Chem Mater 18:5150. doi:10.1021/cm0601990

    Article  CAS  Google Scholar 

  7. Lee CW, Jung SS, Lee JS (2008) Mater Lett 62:561. doi:10.1016/j.matlet.2007.08.073

    Article  CAS  Google Scholar 

  8. Zhang LY, Feng J, Xue DS (2007) Mater Lett 61:1363. doi:10.1016/j.matlet.2006.07.049

    Article  CAS  Google Scholar 

  9. Gao CX, Liu QF, Xue DS (2002) J Mater Sci Lett 21:1781. doi:10.1023/A:1020941325311

    Article  CAS  Google Scholar 

  10. Wang HW, Lin HC, Yeh YC, Kuo CH (2007) J Magn Magn Mater 310:2425. doi:10.1016/j.jmmm.2006.10.814

    Article  CAS  Google Scholar 

  11. Suber L, Imperatori P, Ausanio G, Fabbri F, Hofmeister H (2005) J Phys Chem B 109:7103. doi:10.1021/jp045737f

    Article  CAS  Google Scholar 

  12. Cornell RM, Schwertmann U (2003) The iron oxides, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  13. Kulkarni SS, Lokhande CD (2003) Mater Chem Phys 82:151. doi:10.1016/S0254-0584(03)00212-8

    Article  CAS  Google Scholar 

  14. Choi KH, Lee SH, Kim YR, Malkinski L, Vovk A, Barnakov Y, Park JH, Jung YK, Jung JS (2007) J Magn Magn Mater 310:e861. doi:10.1016/j.jmmm.2006.11.022

    Article  CAS  Google Scholar 

  15. Zou G, Xiong K, Jiang C, Li H, Li T, Du J, Qian Y (2005) J Phys Chem B 109:18356. doi:10.1021/jp052678c

    Article  CAS  Google Scholar 

  16. Noorjahan M, Kumari VD, Subrahmanyam M, Boule P (2004) Appl Catal B 47:209. doi:10.1016/j.apcatb.2003.08.004

    Article  CAS  Google Scholar 

  17. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Murugesan V (2002) J Photochem Photobiol A 148:153. doi:10.1016/S1010-6030(02)00085-0

    Article  CAS  Google Scholar 

  18. Zhang RB (2005) J Non-Cryst Solids 351:2129. doi:10.1016/j.jnoncrysol.2005.04.048

    Article  CAS  Google Scholar 

  19. Gao Y, Liu H (2005) Mater Chem Phys 92:604. doi:10.1016/j.matchemphys.2005.02.018

    Article  CAS  Google Scholar 

  20. Geus JW (1986) Appl Catal 25:313. doi:10.1016/S0166-9834(00)81249-X

    Article  CAS  Google Scholar 

  21. Huo L, Li W, Lu L, Cui H, Xi S, Wang J, Zhao B, Shen Y, Lu Z (2000) Chem Mater 12:790. doi:10.1021/cm990690+

    Article  CAS  Google Scholar 

  22. Ohmori T, Takahashi H, Mametsuka H, Suzuki E (2000) Phys Chem Chem Phys 2:3519. doi:10.1039/b003977m

    Article  CAS  Google Scholar 

  23. Catti M, Valerio G, Dovesi R (1995) Phys Rev B 51:7441. doi:10.1103/PhysRevB.51.7441

    Article  CAS  Google Scholar 

  24. Hansen MF, Koch CB, Mørup S (2000) Phys Rev B 62:1124. doi:10.1103/PhysRevB.62.1124

    Article  CAS  Google Scholar 

  25. Xu X, Wang J, Yang C, Wu H, Yang FJ (2009) Alloys Compd 468:414. doi:10.1016/j.jallcom.2008.01.013

    Article  CAS  Google Scholar 

  26. Philipse AP, Bruggen MPB, Pathmamanoharan C (1994) Langmuir 10:92. doi:10.1021/la00013a014

    Article  CAS  Google Scholar 

  27. Solinas S, Piccaluga G, Morales MP, Serna CJ (2001) Acta Mater 49:2805. doi:10.1016/S1359-6454(01)00160-4

    Article  CAS  Google Scholar 

  28. Lu Y, Yin YD, Brian TM, Xia YN (2002) Nano Lett 2(3):183. doi:10.1021/nl015681q

    Article  CAS  Google Scholar 

  29. Malyshev VN, Zorin KM (2007) Appl Surf Sci 254:1511. doi:10.1016/j.apsusc.2007.07.079

    Article  CAS  Google Scholar 

  30. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1978) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Minnesota

    Google Scholar 

  31. Patel MN, Williams RD, May RA, Uchida H, Stevenson KJ, Johnston KP (2008) Chem Mater 20:6029. doi:10.1021/cm8012705

    Article  CAS  Google Scholar 

  32. Yerokhin AL, Nie X, Leyland A, Matthews A (2000) Surf Coat Technol 130:195. doi:10.1016/S0257-8972(00)00719-2

    Article  CAS  Google Scholar 

  33. Somasundaran P (ed) (2006) Encyclopaedia of surface and colloid science. Taylor & Francis, New York, p 1857

Download references

Acknowledgments

This research was in part supported by a grant from the Lithuanian State Science and Studies Foundation (C-07035). The authors are grateful to Remigijus Juškėnas from the Institute of Chemistry for assistance in XRD spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arūnas Jagminas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagminas, A., Ragalevičius, R., Mažeika, K. et al. A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate. J Solid State Electrochem 14, 271–277 (2010). https://doi.org/10.1007/s10008-009-0820-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0820-7

Keywords

Navigation