Skip to main content
Log in

Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfate sodium solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, we analyze the electrodeposition of cobalt by electrochemical techniques onto GCE (system I) and HOPG (system II) electrodes from sulfate solutions. Cyclic voltammetry and current transient measurements were used to obtain the nucleation and growth mechanism. The results clearly showed that electrodeposition of cobalt is a diffusion-controlled process with a typical 3D nucleation mechanism in both substrates. The average ΔG calculated for the stable nucleus formation was 1.97 × 10−20 J nuclei−1 and 3.58 × 10−20 J nuclei−1 for system I and system II, respectively. The scanning electron microscope (SEM) images indicated similar nucleation and growth processes on GCE and HOPG substrates at same overpotential with a homogeneous disperse cobalt clusters. X-ray energy-dispersive spectroscopy (EDS) was performed in order to ensure that the clusters formed are cobalt. The nuclei’s size obtained was dependent of the overpotential applied; at lower overpotentials, the growth rate of the cobalt clusters diminishes when their number increases due to the strongly reduced concentration of cobalt ions because of their consumption by a larger number of growing particles. A theoretical quantum study employing PM6 method suggests that Na+ adsorbed deactivate the local surface occasionating the formation of disperse cobalt clusters on carbon electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Su JL, Chen MM, Lo J, Lee RE (1988) J Appl Phys 63:4022. doi:10.1063/1.340536

    Article  Google Scholar 

  2. Quinn HF, Croll IM (1980) Advances in X-ray analysis. Plenum, New York

    Google Scholar 

  3. Grujicic D, Pesic B (2004) Electrochim Acta 49:4719. doi:10.1016/j.electacta.2004.05.028

    Article  CAS  Google Scholar 

  4. Rehim SSAE, Wahaab SMAE, Ibrahim MAM, Dankeria MA (1998) J Chem Technol Biotechnol 73:369. doi:10.1002/(SICI) 1097-4660(199812)73:4<369::AID-JCTB971>;3.0.CO;2-P

    Article  Google Scholar 

  5. Gomez E, Valles E (2002) J Appl Electrochem 32:693. doi:10.1023/A:1020194532136

    Article  CAS  Google Scholar 

  6. Floate S, Hyde M, Compton RG (2002) J Electroanal Chem 523:49. doi:10.1016/S0022-0728(02)00709-X

    Article  CAS  Google Scholar 

  7. Gomez E, Marin M, Sanz F, Valles E (1997) J Electroanal Chem 422:139. doi:10.1016/S0022-0728(96)04899-1

    Article  CAS  Google Scholar 

  8. Soto AB, Arce EM, Palomar-Pardave M, Gonzalez I (1996) Electrochim Acta 41:2647. doi:10.1016/0013-4686(96) 00088-6

    Article  CAS  Google Scholar 

  9. Myung N, Ryu KH, Sumodjo PTA, Nobe K (1998) Fundamental aspects of electrochemical deposition and dissolution including modeling. Electrochemical Society, Pennington

    Google Scholar 

  10. Palomar-Pardave M, González I, Soto AB, Arce EM (1998) J Electroanal Chem 443:125. doi:10.1016/S0022-0728(97)00496-8

    Article  CAS  Google Scholar 

  11. Mendoza-Huizar LH, Robles J, Palomar-Pardavé M (2002) J Electroanal Chem 521:95. doi:10.1016/S0022-0728(02)00659-9

    Article  CAS  Google Scholar 

  12. Cui CQ, Jiang SP, Tseung ACC (1990) J Electrochem Soc 137(11):3418. doi:10.1149/1.2086232

    Article  CAS  Google Scholar 

  13. Nakano H, Nakahara K, Kawano S, Oue S, Akiyama T, Fukushima H (2002) J Appl Electrochem 32:43. doi:10.1023/A:1014219106152

    Article  CAS  Google Scholar 

  14. Fletcher S, Halliday CS, Gates D, Westcott, Liwin T, Nelson G (1983) J Electroanal Chem 159:267. doi:10.1016/S0022-0728(83)80627-5

  15. Rehim SSAE, Ibrahim MAM, Dankeria MM (2002) J Appl Electrochem 32:1019. doi:10.1023/A:1020945031502

    Article  Google Scholar 

  16. Wheeler DR, Wang JX, Adžić RR (1995) J Electroanal Chem 387:115. doi:10.1016/0022-0728(95)03864-D

    Article  Google Scholar 

  17. Jia-Wei Y, Jian-Ming W, Wu Q, Zhao-Xiong X, Bing-Wei M (2003) Langmuir 19:7948. doi:10.1021/la034500s

    Article  Google Scholar 

  18. Rivera M, Rios-Reyes CH, Mendoza-Huizar LH (2008) Appl Surf Sci 255:1754. doi:10.1016/j.apsusc.2008.06.016

    Article  CAS  Google Scholar 

  19. Stewart JJP (2007) J Mol Model 13:1173. doi:10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  20. Stewart JJP (2008) MOPAC2007 Version 8.032L. Stewart Computational Chemistry, Colorado Springs

  21. Wavefunction (2002) Spartan’02 for Linux package. Wavefunction Inc., Irvine

    Google Scholar 

  22. Rios-Reyes CH, Rivera M, Mendoza-Huizar LH (2008) Electrochemical and AFM study of cobalt electrodeposits from sodium and ammonium sulfate solutions onto HOPG electrode. In: Mendoza-Huizar LH (ed) Theoretical and experimental advances in electrodeposition. Research SignPost, Trivandrum

    Google Scholar 

  23. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood, Chichester

    Google Scholar 

  24. Palomar-Pardave M, Gonzalez I, Soto AB, Arce EM (1998) J Electroanal Chem 443:125. doi:10.1016/S0022-0728(97)00496-8

    Article  CAS  Google Scholar 

  25. Scharifker BR, Hills G (1983) Electrochim Acta 28:879. doi:10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  26. Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13. doi:10.1016/0022-0728(84)80207-7

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamental and applications. Wiley, New York

    Google Scholar 

  28. Stoychev D, Papoutsis A, Kelaidopoulou A, Kokkinidis G, Milchev A (2001) Mater Chem Phys 72:360. doi:10.1016/S0254-0584(01)00337-6

    Article  CAS  Google Scholar 

  29. Myland JC, Oldham KB (2005) J Electroanal Chem 575:81. doi:10.1016/j.jelechem.2004.09.004

    Article  CAS  Google Scholar 

  30. Zhu CY, Wu R, Wu YQ, Fan YL, Jiang ZM, Yang XJ (2007) Nanotechnology 18:235403. doi:10.1088/0957-4484/18/23/235403

    Article  Google Scholar 

  31. Hermann L, Tarallo A (2000) Electrochem Commun 2:85. doi:10.1016/S1388-2481(99)00144-7

    Article  Google Scholar 

  32. Hermann L, Tarallo A (1999) J Electroanal Chem 470:70. doi:10.1016/S0022-0728(99)00221-1

    Article  Google Scholar 

  33. Southampton Electrochemistry Group (1985) Instrumental methods in electrochemistry. Wiley, New York

    Google Scholar 

  34. Mostany J, Mozota J, Scharifker BR (1984) J Electroanal Chem 177:25. doi:10.1016/0022-0728(84)80208-9

    Article  CAS  Google Scholar 

  35. Serruya A, Mostany J, Scharifker BR (1999) J Electroanal Chem 464:39. doi:10.1016/S0022-0728(98)00464-1

    Article  CAS  Google Scholar 

  36. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer, Norwell

    Google Scholar 

  37. Petrović Ž, Metikoš-Huković M, Grubač Z, Omanović S (2006) Thin Solid Films 513:193. doi:10.1016/j.tsf.2006.01.026

    Article  Google Scholar 

  38. Scharifker B, Rugeles R, Mozota J (1984) Electrochim Acta 29:261. doi:10.1016/0013-4686(84)87057-7

    Article  CAS  Google Scholar 

  39. Milchev A (1991) J Contemp Phys 32:321. doi:10.1080/00107519108223705

    Article  CAS  Google Scholar 

  40. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  41. Bucknum MJ, Pickard CJ, Stamatin I, Castro EA (2006) J Theor Comput Chem 5:175. doi:10.1142/S0219633606002209

    Article  CAS  Google Scholar 

  42. Mendoza-Huizar LH, Palomar-Pardave ME, Robles J (2004) J Mol Struct 679:187

    CAS  Google Scholar 

Download references

Acknowledgments

C.H.R.R. is grateful for a graduate student fellowship from CONACyT. We gratefully acknowledge financial support from CONACyT project APOY-COMPL-2008 No. 91261 and to the Universidad Autónoma del Estado de Hidalgo. M.R. acknowledges financial support from DGAPA-PAPIIT, project number IN-112106. Authors acknowledge Juan Hernandez for the SEM technical assistance. We acknowledge Professors M.E. Palomar-Pardavé and M. Romero-Romo for fruitful discussions. We are also grateful to the reviewers of the manuscript for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Mendoza-Huizar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rios-Reyes, C.H., Mendoza-Huizar, L.H. & Rivera, M. Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfate sodium solutions. J Solid State Electrochem 14, 659–668 (2010). https://doi.org/10.1007/s10008-009-0816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0816-3

Keywords

Navigation