Journal of Solid State Electrochemistry

, Volume 14, Issue 4, pp 593–597 | Cite as

Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries

  • Jong Hyeok Park
  • Sang-Young Lee
  • Jong Hun Kim
  • Soonho Ahn
  • Jae-Sung Park
  • Yeon Uk Jeong
Original Paper

Abstract

In an attempt to achieve lithium-ion batteries with high rate capability, the effect of conducting additives with various shapes and contents on the physical and electrochemical performances was evaluated. Although the density of the cathode decreased upon the addition of the additives, the electrical conductivity and electrochemical performance were greatly improved. The composite cathodes with well-dispersed multi-walled carbon nanotubes (MWCNTs) exhibited excellent high rate capabilities and cyclabilities. In the case of cathode with 8 wt.% of MWCNTs (low density—LD), the highest discharge capacity of 136 mAh/g was obtained at 5 C-rate and capacity retention of 97% for 50 cycles was observed at 1 C-rate of discharge. The cathode with a mixture of 2 wt.% of Super P and 4 wt.% of MWCNTs (LD) also exhibits improved cycle performances. The volume changes in the charge and discharge processes were successfully controlled by the bundles distributed between the host particles.

References

  1. 1.
    Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783. doi:10.1016/0025-5408(80) 90012-4 CrossRefGoogle Scholar
  2. 2.
    Yoshio M, Tanaka H, Tomonaga K, Noguchi H (1992) J Power Sources 40:347. doi:10.1016/0378-7753(92) 80023-5 CrossRefGoogle Scholar
  3. 3.
    Wang H, Hobbie EK (2003) Langmuir 19:3091. doi:10.1021/la026883k CrossRefGoogle Scholar
  4. 4.
    Maeda Y, Kimura SI, Hirashima Y, Kanda M, Lian Y, Wakahara T, Akasaka T, Hasegawa T, Tokumoto H, Shimizu T, Kataura H, Miyauchi Y, Maruyama S, Kobayashi K, Nagase S (2004) J Phys Chem B 108:18395. doi:10.1021/jp0457242 CrossRefGoogle Scholar
  5. 5.
    Islam MF, Rojas E, Bergey DM, Johson AT, Yodh AG (2003) Nano Lett 3:269. doi:10.1021/nl025924u CrossRefGoogle Scholar
  6. 6.
    Vaisman L, Marom G, Wagner HD (2006) Adv Funct Mater 16:357. doi:10.1002/adfm.200500142 CrossRefGoogle Scholar
  7. 7.
    Stephenson JJ, Hudson JL, Azad S, Tour JM (2006) Chem Mater 18:374. doi:10.1021/cm052204q CrossRefGoogle Scholar
  8. 8.
    Sakamoto JS, Dunn B (2002) J Electrochem Soc 149:A26. doi:10.1149/1.1425791 CrossRefGoogle Scholar
  9. 9.
    Sheem K, Lee YH, Lim HS (2006) J Power Sources 158:1425. doi:10.1016/j.jpowsour.2005.10.077 CrossRefGoogle Scholar
  10. 10.
    Lin Q, Harb JN (2004) J Electrochem Soc 151:A1115. doi:10.1149/1.1762878 CrossRefGoogle Scholar
  11. 11.
    Lee JH, Kim GS, Choi YM, Park WI, Rogers JA, Paik U (2008) J Power Sources 184:308. doi:10.1016/j.jpowsour.2008.05.090 CrossRefGoogle Scholar
  12. 12.
    Sotowa C, Origi G, Takeuchi M, Nishimura Y, Takeuchi K, Jang IY, Kim YJ, Hayashi T, Kim YA, Endo M, Dresselhaus MS (2008) ChemSusChem 1:911. doi:10.1002/cssc.200800170 CrossRefGoogle Scholar
  13. 13.
    Amatucci GG, Tarascon JM, Klein LC (1996) J Electrochem Soc 143:1114. doi:10.1149/1.1836594 CrossRefGoogle Scholar
  14. 14.
    Rubino RS, Gan H, Takeuchi ES (2001) J Electrochem Soc 148:A1029. doi:10.1149/1.1390344 CrossRefGoogle Scholar
  15. 15.
    Korea patent number 1005928070000.Google Scholar
  16. 16.
    Van der Pauw LJ (1961) Philips Res Rep 16:187Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jong Hyeok Park
    • 1
  • Sang-Young Lee
    • 2
  • Jong Hun Kim
    • 3
  • Soonho Ahn
    • 3
  • Jae-Sung Park
    • 4
  • Yeon Uk Jeong
    • 5
  1. 1.Department of Chemical EngineeringSungkyunkwan UniversitySuwonSouth Korea
  2. 2.Department of Chemical EngineeringKangwon National UniversityChuncheonSouth Korea
  3. 3.Batteries Research & DevelopmentLG ChemTaejonSouth Korea
  4. 4.VITZROCELL Co., Ltd./R & D CenterYesanSouth Korea
  5. 5.School of Materials Science and EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations