Skip to main content
Log in

Electrochemistry of bilirubin oxidase at carbon nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we compared the direct electron transfer and electrocatalytic properties of bilirubin oxidase (BOD) immobilized at two kinds of carbon nanotubes (CNTs), bamboo-CNTs and uniform-CNTs. X-ray diffraction and X-ray photoelectron spectroscopy results indicated that the ratio of sp2 band to sp3 band and the content of oxygen-containing groups at the surface of uniform-CNTs were higher than that of bamboo-CNTs. Moreover, uniform-CNTs can be well separated at the surface of the electrode. Better electrochemical and electrocatalytic properties of BOD immobilized at uniform-CNTs were shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton SC, Gallaway J, Atanassov P (2004) Chem Rev 104:4867. doi:10.1021/cr020719k

    Article  CAS  Google Scholar 

  2. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectron 21:2015. doi:10.1016/j.bios.2006.01.030

    CAS  Google Scholar 

  3. Davis F, Higson SPJ (2007) Biosens Bioelectron 22:1224. doi:10.1016/j.bios.2006.04.029

    Google Scholar 

  4. Barton SC, Kim HH, Binyamin G, Heller A (2001) J Am Chem Soc 123:5802. doi:10.1021/ja010408b

    Article  CAS  Google Scholar 

  5. Habrioux A, Sibert E, Servat K, Vogel W, Kokoh KB, Alonso-Vante N (2007) J Phys Chem B 111:10329. doi:10.1021/jp0720183

    Article  CAS  Google Scholar 

  6. Kim H, Mano N, Zhang Y, Heller A (2003) J Electrochem Soc 150:209

    Google Scholar 

  7. Tsujimura S, Kano K, Ikeda T (2002) Electrochemistry 70:940

    CAS  Google Scholar 

  8. Tsujimura S, Fujita M, Tatsumi H, Kano K, Ikeda T (2001) Phys Chem Chem Phys 3:1331. doi:10.1039/b009539g

    Article  CAS  Google Scholar 

  9. Tsujimura S, Tatsumi B, Ogawa J, Shimizu S, Kano K, Ikeda T (2001) J Electroanal Chem 1-2:69. doi:10.1016/S0022-0728(00)00239-4

    Article  Google Scholar 

  10. Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L (2005) Biosens Bioelectron 20:2517. doi:10.1016/j.bios.2004.10.003

    Article  CAS  Google Scholar 

  11. Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K, Sode K (2005) Biosens Bioelectron 20:2145. doi:10.1016/j.bios.2004.08.017

    Article  CAS  Google Scholar 

  12. Kim HH, Zhang YC, Heller A (2004) Anal Chem 76:2411. doi:10.1021/ac035487j

    Article  CAS  Google Scholar 

  13. Tominaga M, Otani M, Kishikawa M, Taniguchi I (2006) Chem Lett 35:1174. doi:10.1246/cl.2006.1174

    Article  CAS  Google Scholar 

  14. Kang C, Shin H, Heller A (2006) Bioelectrochemistry 68:22. doi:10.1016/j.bioelechem.2005.03.002

    Article  CAS  Google Scholar 

  15. Dronov R, Kurth DG, Mohwald H, Scheller FW, Lisdat F (2008) Angew Chem Int Ed 47:3000. doi:10.1002/anie.200704049

    Article  CAS  Google Scholar 

  16. Togo M, Takamura A, Asai T, Kaji H, Nishizawa M (2008) J Power Sources 178:53. doi:10.1016/j.jpowsour.2007.12.052

    Article  CAS  Google Scholar 

  17. Otsuka K, Sugihara T, Tsujino Y, Osakai T, Tamiya E (2007) Anal Biochem 370:98. doi:10.1016/j.ab.2007.06.011

    Article  CAS  Google Scholar 

  18. Lim J, Cirigliano N, Wang J, Dunn B (2007) Phys Chem Chem Phys 9:1809. doi:10.1039/b618422g

    Article  CAS  Google Scholar 

  19. Dronov R, Kurth DG, Scheller FW, Lisdat F (2007) Electroanalysis 19:1642. doi:10.1002/elan.200703900

    Article  CAS  Google Scholar 

  20. Gao F, Yan Y, Su L, Wang L, Mao L (2007) Electrochem Commun 9:989. doi:10.1016/j.elecom.2006.12.008

    Article  CAS  Google Scholar 

  21. Shleev S, Kasmi AE, Ruzgas T, Gorton L (2004) Electrochem Commun 6:934. doi:10.1016/j.elecom.2004.07.008

    Article  CAS  Google Scholar 

  22. Tsujimura S, Kawaharada M, Nakagawa T, Kano K, Ikeda T (2003) Electrochem Commun 5:138. doi:10.1016/S1388-2481(03) 00003-1

    Article  CAS  Google Scholar 

  23. Tsujimura S, Kano K, Ikeda T (2005) J Electroanal Chem 576:113. doi:10.1016/j.jelechem.2004.09.031

    Article  CAS  Google Scholar 

  24. Iijima S (1991) Nature 354:56. doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  25. Xiao Y, Li CM (2008) Electroanalysis 20:648. doi:10.1002/elan.200704125

    Article  CAS  Google Scholar 

  26. Baughman RH, Zakhidov AA, Heer WA (2002) Science 297:787. doi:10.1126/science.1060928

    Article  CAS  Google Scholar 

  27. Carpani I, Scavetta E, Tonelli D (2008) Electroanalysis 20:84. doi:10.1002/elan.200704054

    Article  CAS  Google Scholar 

  28. Sherigara BS, Kutner W, D'Souza F (2003) Electroanalysis 15:753. doi:10.1002/elan.200390094

    Article  CAS  Google Scholar 

  29. Yan Y, Yehezkeli O, Willner I (2007) Chem Eur J 13:10168. doi:10.1002/chem.200700806

    Article  CAS  Google Scholar 

  30. Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L (2006) Electroanalysis 18:587. doi:10.1002/elan.200503444

    Article  CAS  Google Scholar 

  31. Zheng W, Zhou HM, Zheng YF, Wang N (2008) Chem Phys Lett 457:381. doi:10.1016/j.cplett.2008.04.047

    Article  CAS  Google Scholar 

  32. Gooding JJ (2005) Electrochim Acta 50:3049. doi:10.1016/j.electacta.2004.08.052

    Article  CAS  Google Scholar 

  33. Wu G, Xu B (2007) J Power Sources 174:148. doi:10.1016/j.jpowsour.2007.08.024

    Article  CAS  Google Scholar 

  34. Park KW, Sung YE, Han S, Yun Y, Hyeon T (2004) J Phys Chem B 108:939. doi:10.1021/jp0368031

    Article  CAS  Google Scholar 

  35. Xu T, Yang J, Liu J, Fu Q (2007) Appl Surf Sci 253:8945. doi:10.1016/j.apsusc.2007.05.028

    Article  CAS  Google Scholar 

  36. Gong K, Yan Y, Zhang M, Su L, Xiong S, Mao L (2005) Anal Sci 21:1383. doi:10.2116/analsci.21.1383

    Article  CAS  Google Scholar 

  37. Xia W, Wang Y, Bergsträßer R, Kundu S, Muhler M (2007) Appl Surf Sci 254:247. doi:10.1016/j.apsusc.2007.07.120

    Article  CAS  Google Scholar 

  38. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) Biochim Biophys Acta 1292:303

    Google Scholar 

  39. Tsujimura S, Tatsumi H, Ogawa J, Shimizu S, Kano K, Ikeda T (2001) J Electroanal Chem 496:69. doi:10.1016/S0022-0728(00) 00239-4

    Article  CAS  Google Scholar 

  40. Mao N, Kim H, Zhang Y, Heller A (2002) J Am Chem Soc 124:6480. doi:10.1021/ja025874v

    Article  Google Scholar 

  41. Mao N, Kim H, Heller A (2002) J Phys Chem B 106:8842. doi:10.1021/jp025955d

    Article  Google Scholar 

  42. Christenson A, Shleev S, Mano N, Heller A, Gorton L (2006) Biochim Biophys Acta 1757:1634. doi:10.1016/j.bbabio.2006.08.008

    Article  CAS  Google Scholar 

  43. Wang J (2005) Electroanalysis 17:7. doi:10.1002/elan.200403113

    Article  CAS  Google Scholar 

  44. Heller A (1990) Acc Chem Res 23:128. doi:10.1021/ar00173a002

    Article  CAS  Google Scholar 

  45. Bard AJ, Faulkner LR (1980) Electrochemical methods. fundamentals and applications, Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 20805010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Zhao, H.Y., Zhou, H.M. et al. Electrochemistry of bilirubin oxidase at carbon nanotubes. J Solid State Electrochem 14, 249–254 (2010). https://doi.org/10.1007/s10008-009-0794-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0794-5

Keywords

Navigation