Skip to main content
Log in

Electrochemical modification of Bi2S3 coatings in a nickel plating electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of Bi2S3 coatings in Watts nickel plating electrolyte was investigated using the cyclic voltammetry, electrochemical quartz crystal microbalance, X-ray diffraction, and energy dispersive X-ray analysis methods. During the bismuth sulfide coating reduction in Watts background electrolyte in the potential region from −0.4 to −0.6 V, the Bi2S3 and Bi(III) oxygen compounds are reduced to metallic Bi, and the decrease in coating mass is related to the transfer of S2− ions from the electrode surface. When the bismuth sulfide coating is reduced in Watts nickel plating electrolyte, the observed increase in coating mass in the potential region −0.1 to −0.4 V is conditioned by Ni2+ ions reduction before the bulk deposition of Ni, initiated by Bi2S3. In this potential region, the reduction of Bi(III) oxygen compounds can occur. After the treatment of as-deposited bismuth sulfide coating in nickel plating electrolyte at E = −0.3 V, the sheet resistance of the layer decreases from 1013 to 500–700 Ω cm. A metal-rich mixed sulfide Ni3Bi2S2–parkerite is obtained when as-deposited bismuth sulfide coating is treated in Watts nickel plating electrolyte at a potential close to the equilibrium potential of the Ni/Ni2+ system and then annealed at temperatures higher than 120 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mai TT, Schultze JW, Staikov G (2004) J Solid State Electrochem 8:201 doi:10.1007/s10008-003-0426-4

    Article  CAS  Google Scholar 

  2. Vinkyavichyus I, Mozhginskene I, Zhelene A, Pilite S (1997) Russ J Appl Chem 70:1900

    Google Scholar 

  3. Mai TT, Schultze JW, Staikov G, Muňoz AG (2005) Thin Solid Films 488:321 doi:10.1016/j.tsf.2005.04.069

    Article  CAS  Google Scholar 

  4. Valiulienė G, Žielienė A, Jasulaitienė V (2005) Chemija 16(2):18

    Google Scholar 

  5. Naruškevičius L, Šimkūnaitė B, Valiulienė G, Žielienė A, Jasulaitienė V, Sudavičius A, Baranauskas M, Stankevičius A (2007) Trans IMF 85(4):207

    Google Scholar 

  6. Abd El Halim AM, Fiechter S, Tributsch H (2002) Electrochim Acta 47:2615 doi:10.1016/S0013-4686(02)00122-6

    Article  CAS  Google Scholar 

  7. Baranauskas M (2001) Pat. EP 1174530(A2) EU, Cl. C25D5/54. Method of placing conductor layer on dielectric surface

  8. Valiulienė G, Žielienė A, Jasulaitienė V, Naruškevičius L, Pakštas V (2008) Trans IMF 86(6):326

    Google Scholar 

  9. Sauerbrey G (1959) Z Phys 155:206 doi:10.1007/BF01337937

    Article  CAS  Google Scholar 

  10. Buttry D, Ward M (1992) Chem Rev 92:1355 doi:10.1021/cr00014a006

    Article  CAS  Google Scholar 

  11. Saloniemi H, Kemell M, Ritala M, Leskelä M (2000) J Electroanal Chem 482:139 doi:10.1016/S0022-0728(00)00038-3

    Article  CAS  Google Scholar 

  12. Kemell M, Saloniemi H, Ritala M, Leskelä M (2000) Electrochim Acta 45:3737 doi:10.1016/S0013-4686(00)00450-3

    Article  CAS  Google Scholar 

  13. Oblonsky LJ, Devine TM (1995) Corros Sci 37:17 doi:10.1016/0010-938X(94)00102-C

    Article  CAS  Google Scholar 

  14. Melendres CA, Pankush M (1992) J Electroanal Chem 333(1–2):103 doi:10.1016/0022-0728(92)80384-G

    Article  CAS  Google Scholar 

  15. Benje M, Eiermann M, Pittermann U, Weil KG (1986) J Phys Chem 90(5):435

    CAS  Google Scholar 

  16. Grubač Z, Metikoš-Hukovič M (1999) Electrochim Acta 44(25):4559 doi:10.1016/S0013-4686(99)00174-7

    Article  Google Scholar 

  17. Bard AJ (ed) (1975) Encyclopedia of electrochemistry of the elements, vol. 3. Marcel Dekker, New York

  18. Valiulienė G, Žielienė A, Jasulaitienė V (2006) Trans IMF 84(3):162

    Google Scholar 

  19. Valyulene G, Zhelene A, Jasulaitene V, Shimkunaite B (2007) Russ J Appl Chem 80:1322 doi:10.1134/S1070427207080113

    Article  CAS  Google Scholar 

  20. Baranov AI, Olenev AV, Popovkin BA (2001) Russ Chem Bull 50:353

    Article  CAS  Google Scholar 

  21. Sakamoto T, Wakeshima M, Hinatsu Y (2006) J Phys Condens Matter 18:4417 doi:10.1088/0953-8984/18/17/027

    Article  CAS  Google Scholar 

  22. Qian G, Shao M, Tong Y, Ni Y (2005) J Cryst Growth 284:412 doi:10.1016/j.jcrysgro.2005.07.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support by the Lithuanian State Science and Studies Foundation Grant T-07161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albina Žielienė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiulienė, G., Žielienė, A., Šimkūnaitė, B. et al. Electrochemical modification of Bi2S3 coatings in a nickel plating electrolyte. J Solid State Electrochem 14, 203–212 (2010). https://doi.org/10.1007/s10008-009-0792-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0792-7

Keywords

Navigation