Skip to main content
Log in

Synthesis and electrochemical properties of nanostructured LiAl x Mn2 − x O4 − y Br y particles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured LiAl x Mn2 − x O4 − y Br y particles were synthesized successfully by annealing the mixed precursors, which were prepared by room-temperature solid-state coordination method using lithium acetate, manganese acetate, lithium bromide, aluminum nitrate, citric acid, and polyethylene glycol 400 as starting materials. X-ray diffractometer patterns indicated that the particles of the as-synthesized samples are well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiAl x Mn2 − x O4 − y Br y samples consist of small-sized nanoparticles. The results of galvanostatic cycling tests revealed that the initial discharge capacity of LiAl0.05Mn1.95O3.95Br0.05 is 119 mAh g−1; after the 100th cycle, its discharge capacity still remains at 92 mAh g−1. The introduction of Al and Br in LiMn2O4 bring a synergetic effect and is quite effective in increasing the capacity and elevating cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun YK (1997) Solid State Ion 100:115, doi:10.1016/S0167-2738(97)00311-1

    Article  CAS  Google Scholar 

  2. Robertson AD, Lu SH, Averill WF, Howard WF Jr (1997) J Electrochem Soc 144:3500, doi:10.1149/1.1838040

    Article  CAS  Google Scholar 

  3. Amatucci GG, Tarascon JM (1997) US Patent No. 5,674,645

  4. Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491, doi:10.1016/S0013-4686(02)00317-1

    Article  CAS  Google Scholar 

  5. Amatucci GG, Pasquier AD, Blyr A, Zheng T, Tarascon JM (1999) Electrochim Acta 45:255, doi:10.1016/S0013-4686(99)00209-1

    Article  CAS  Google Scholar 

  6. Komaba S, Oikawa K, Myung ST, Kumagai N, Kamiyama T (2002) Solid State Ion 149:47, doi:10.1016/S0167-2738(02)00168-6

    Article  CAS  Google Scholar 

  7. Huang YD, Li J, Jia DZ (2005) J Colloid Interface Sci 286:263, doi:10.1016/j.jcis.2004.12.049

    Article  CAS  Google Scholar 

  8. Yoshio M, Xia Y, Kumada N, Ma S (2001) J Power Sources 101:79, doi:10.1016/S0378-7753(01)00546-8

    Article  CAS  Google Scholar 

  9. Lee JH, Hong JK, Jang DH, Sun YK, Oh SM (2000) J Power Sources 89:7, doi:10.1016/S0378-7753(00)00375-X

    Article  CAS  Google Scholar 

  10. Amatucci GG, Pereira N, Zhang T, Plitz I, Tarascon JM (1999) J Power Sources 81–82:39, doi:10.1016/S0378-7753(99)00186-X

    Article  Google Scholar 

  11. Palacin MR, Cras FL, Seguin L, Anne M, Chabre Y, Tarascon JM, Amatucci G, Vaughan G, Strobel P (1999) J Solid State Chem 144:361, doi:10.1006/jssc.1999.8166

    Article  CAS  Google Scholar 

  12. Jiang R, Huang Y, Jia D, Wang L (2007) J Electrochem Soc 154:A698, doi:10.1149/1.2734800

    Article  CAS  Google Scholar 

  13. Wu X, Zong X, Yang Q, Jin Z, Wu H (2001) J Fluorine Chem 107:39, doi:10.1016/S0022-1139(00)00344-4

    Article  Google Scholar 

  14. Sun YK, Jeon YS (1999) J Mater Chem 9:3147, doi:10.1039/a906811b

    Article  CAS  Google Scholar 

  15. Sun YK (2000) Electrochem Commun 2:6, doi:10.1016/S1388-2481(99)00136-8

    Article  CAS  Google Scholar 

  16. Myung ST, Komaba S, Kumagai N (2002) Electrochim Acta 47:299

    Google Scholar 

  17. Dobley A, Ngala K, Yang S, Zavalij PY, Whittingham MS (2001) Chem Mater 13:4382, doi:10.1021/cm010518h

    Article  CAS  Google Scholar 

  18. Ye XR, Jia DZ, Yu JQ, Xin XQ, Xue ZL (1999) Adv Mater 11:941, doi:10.1002/(SICI)1521-4095(199908)11:11<941::AID-ADMA941>3.0.CO;2-T

    Article  CAS  Google Scholar 

  19. Wang RY, Jia DZ, Zhang L, Liu L, Guo ZP, Li BQ, Wang JX (2006) Adv Funct Mater 16:687, doi:10.1002/adfm.200500549

    Article  CAS  Google Scholar 

  20. Jia DZ, Yu JQ, Xia X (1998) Chin Sci Bull 43:571, doi:10.1007/BF02883641

    Article  CAS  Google Scholar 

  21. Lu CH, Lin SW (2001) J Power Sources 97–98:458, doi:10.1016/S0378-7753(01)00637-1

    Article  Google Scholar 

  22. Capsoni D, Bini M, Chiodelli G, Mustarelli P, Massarotti V, Azzoni CB, Mozzati MC, Linati L (2002) J Phys Chem B 106:7432, doi:10.1021/jp020220u

    Article  CAS  Google Scholar 

  23. Fujiyoshi H, Waki S (1997) J Power Sources 68:139, doi:10.1016/S0378-7753(96)02623-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of Xinjiang Province (Nos. 200821121 and 200721102) and the National Natural Science Foundation of China (Nos. 20666005 and 20661003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianzeng Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Jiang, R., Bao, SJ. et al. Synthesis and electrochemical properties of nanostructured LiAl x Mn2 − x O4 − y Br y particles. J Solid State Electrochem 13, 799–805 (2009). https://doi.org/10.1007/s10008-008-0757-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0757-2

Keywords

Navigation