Skip to main content
Log in

Dip-coating and co-sintering technologies for fabricating tubular solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A dip-coating method to fabricate anode-supported tubular solid oxide fuel cells has been successfully developed. The length, outside diameter, and thickness of the single cell are 10.8 cm, 1.0 cm, and 0.6 mm, respectively. The area of the cathode is 15–16 cm2 (cathode length = 4.8 cm). The cell consists of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, a LSM-ScSZ cathode functional layer, and a LSM cathode current collecting layer. A preliminary examination of the single tubular cell has been carried out and an acceptable performance was obtained. The maximum power density was, respectively, 325, 276, 208, and 168 mW cm−2 at 850, 800, 750, and 700 °C, when operating with humidified hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Du Y, Sammes NM (2004) J Power Sources 136:66. doi:10.1016/j.jpowsour.2004.05.028

    Article  CAS  Google Scholar 

  2. Dong D, Gao J, Liu X, Meng G (2007) J Power Sources 165:217. doi:10.1016/j.jpowsour.2006.10.098

    Article  CAS  Google Scholar 

  3. Setoguchi T, Sawano M, Eguchi K, Arai H (1990) Solid State Ion 40–41:502. doi:10.1016/0167-2738(90)90390-D

    Article  Google Scholar 

  4. Schoonman J, Dekker JP, Broers JW, Kiwiet NJ (1991) Solid State Ion 46:299. doi:10.1016/0167-2738(91)90229-5

    Article  CAS  Google Scholar 

  5. van Dieten VEJ, Schoonman J (1992) Solid State Ionics 57:141. doi:10.1016/0167-2738(92)90076-2

    Article  Google Scholar 

  6. Chen CC, Nasrallah MM, Anderson HU (1994) Solid State Ion 70–71:101. doi:10.1016/0167-2738(94)90293-3

    Article  Google Scholar 

  7. Hibino T, Hashimoto A, Asano K, Yano M, Suzuki M, Sano M (2002) Electrochem Solid-State Lett 5:A242. doi:10.1149/1.1508551

    Article  CAS  Google Scholar 

  8. Shao Z, Haile SM (2004) Nature 431:170. doi:10.1038/nature02863

    Article  CAS  Google Scholar 

  9. Steele BCH (1999) Nature 400:619. doi:10.1038/23144

    Article  CAS  Google Scholar 

  10. Tsai T, Barnett SA (1995) J Electrochem Soc 142:3084–3087. doi:10.1149/1.2048692

    Article  Google Scholar 

  11. de Souza S, Visco SJ, De Jonghe LC (1997) J Electrochem Soc 144:L35. doi:10.1149/1.1837484

    Article  Google Scholar 

  12. Muccillo P, Muccillo ENS, Fonseca FC, Franca YV, Porfirio TC, de Florio DZ, Berton MAC, Garcia CM (2006) J Power Sources 156:455. doi:10.1016/j.jpowsour.2005.06.021

    Article  CAS  Google Scholar 

  13. Sammes NM, Du Y, Bove R (2005) J Power Sources 145:428. doi:10.1016/j.jpowsour.2005.01.079

    Article  CAS  Google Scholar 

  14. Kendall K, Palin M (1998) J Power Sources 71:268. doi:10.1016/S0378-7753(97)02761-4

    Article  CAS  Google Scholar 

  15. Yashiro K, Yamada N, Kawada T, Hong J, Kaimai A, Nigara Y, Mizusaki J (2002) Electrochemistry 70(12):958

    CAS  Google Scholar 

  16. Kim JH, Songa RH, Song KS, Hyun SH (2003) J Power Sources 122:138. doi:10.1016/S0378-7753(03)00431-2

    Article  CAS  Google Scholar 

  17. Suzuki T, Yamaguchi T, Fujishiro Y, Awano M (2006) J Power Sources 160:73. doi:10.1016/j.jpowsour.2006.01.037

    Article  CAS  Google Scholar 

  18. Funahashi Y, Shimamori T, Suzuki T (2007) J Power Sources 163:731. doi:10.1016/j.jpowsour.2006.10.002

    Article  CAS  Google Scholar 

  19. Li CJ, Li CX, Xing YZ, Gao M, Yang GJ (2006) Solid State Ion 177:2065. doi:10.1016/j.ssi.2006.03.004

    Article  CAS  Google Scholar 

  20. Li CJ, Li CX, Ning XJ (2004) Vacuum 73:699. doi:10.1016/j.vacuum.2003.12.096

    Article  CAS  Google Scholar 

  21. Li S, Wang S, Nie H, Wen T (2006) J Solid State Electrochem 11:59. doi:10.1007/s10008-005-0067-x

    Article  CAS  Google Scholar 

  22. Kim JH, Song RH, Song KS, Hyun SH (2003) J Power Sources 122:138. doi:10.1016/S0378-7753(03)00431-2

    Article  CAS  Google Scholar 

  23. Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F (2005) J Power Sources 141:216. doi:10.1016/j.jpowsour.2004.09.016

    Article  CAS  Google Scholar 

  24. Yamamoto O (2000) Electrochim Acta 45:2423. doi:10.1016/S0013-4686(00)00330-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R.Z., Wang, S.R., Huang, B. et al. Dip-coating and co-sintering technologies for fabricating tubular solid oxide fuel cells. J Solid State Electrochem 13, 1905–1911 (2009). https://doi.org/10.1007/s10008-008-0752-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0752-7

Keywords

Navigation