Skip to main content
Log in

Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical quartz crystal microbalance, combined with cyclic voltammetric, chronoamperometric, and potentiostatic measurements, was used to study electrodeposition/dissolution phenomena at a gold electrode in solutions containing Na2S. Spontaneous, open-circuit deposition processes as well as dissolution of the deposits in sulfide-free solutions have also been investigated. The potential range, scan rate, sulfide concentration, and pH have been varied. The results of the piezoelectric nanogravimetric studies are elucidated by a rather complex scheme involving underpotential deposition of sulfur at approximately −0.85 V vs. sodium calomel electrode, reductive dissolution of the deposited sulfur-containing layer at potentials more negative than approximately −0.9 V, and formation of a sulfur-containing multilayer at potentials more positive than −0.2 V. During the reduction of sulfur deposited on Au, a mass increase due to the formation of polysulfide species in the surface layer, accompanied by incorporation of Na+ counterions, can be observed that starts at approximately −0.4 V. This is a reversible process, i.e., during the reoxidation, counterions leave the surface layers. Frequency excursions during the electroreduction and reoxidation processes reveal existence of several competitive dissolution–deposition steps. Spontaneous interaction between Au and HS species results in a surface mass increase at the open-circuit potential, and it also manifests itself in the substantial decrease of the open-circuit potential after addition of Na2S to the supporting electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buckley AN, Hamilton IC, Woods R (1987) J Electroanal Chem 216:213. doi:10.1016/0022-0728(87)80208-5

    Article  CAS  Google Scholar 

  2. Lezna RO, de Tacconi NR, Arvia AJ (1990) J Electroanal Chem 283:319. doi:10.1016/0022-0728(90)87398-4

    Article  CAS  Google Scholar 

  3. Gao X, Zhang Y, Weaver MJ (1992) Langmuir 8:668. doi:10.1021/la00038a060

    Article  CAS  Google Scholar 

  4. Parker GK, Watling KM, Hope GA, Woods R (2008) Colloids Surfaces A 18:151. doi:10.1016/j.colsurfa.2007.12.029

    Article  CAS  Google Scholar 

  5. Quijada C, Huerta FJ, Morallón E, Vázquez JL, Berlouis LEA (2000) Electrochim Acta 45:1847. doi:10.1016/S0013-4686(99)00396-5

    Article  CAS  Google Scholar 

  6. Vericat C, Vela ME, Andreasen G, Salvarezza RC, Vazquez L, Martin-Gao JA (2001) Langmuir 17:4919. doi:10.1021/la0018179

    Article  CAS  Google Scholar 

  7. Vericat C, Vela ME, Gago J, Salvarezza RC (2004) Electrochim Acta 49:3643. doi:10.1016/j.electacta.2004.02.046

    Article  CAS  Google Scholar 

  8. Lay MD, Varazo K, Stickney JL (2003) Langmuir 19:8416. doi:10.1021/la034474y

    Article  CAS  Google Scholar 

  9. Biener MM, Biener J, Friend CM (2005) Langmuir 21:1668. doi:10.1021/la047387u

    Article  CAS  Google Scholar 

  10. De Tacconi NR, Rajeshwar K (1998) J Electroanal Chem 444:7. doi:10.1016/S0022-0728(97)00533-0

    Article  Google Scholar 

  11. Myung N, Kim S, Lincot D, Lepiller C, de Tacconi NR, Rajeshwar K (2000) Electrochim Acta 45:3749. doi:10.1016/S0013-4686(00)00472-2

    Article  CAS  Google Scholar 

  12. Licht S (1988) J Electrochem Soc 135:2971. doi:10.1149/1.2095471

    Article  CAS  Google Scholar 

  13. Hepel M, Janusz W (2000) Electrochim Acta 45:3785. doi:10.1016/S0013-4686(00)00468-0

    Article  CAS  Google Scholar 

  14. Zhdanov SI (1982) Sulfur. In: Bard AJ (ed) Encyclopedia of electrochemistry of elements, vol. 6. Marcel Dekker, New York, p 273

    Google Scholar 

  15. Zhdanov SI (1985) Sulfur, selenium, tellurium, and polonium. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solution. Marcel Dekker, New York, p 93

    Google Scholar 

  16. Levillain E, Demortier A, Lelieur J-P (2006) Sulfur. In: Scholz F, Pickett CJ (eds) Inorganic electrochemistry, Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 7a. Wiley-VCH, Weinheim, p 253

  17. Orlik M, Galus Z (2006) Electrochemistry of gold. In: Scholz F, Pickett CJ (eds) Inorganic electrochemistry. Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 7b. Wiley-VCH, Weinheim, pp 853–854

  18. Inzelt G (2006) Standard, formal, and other characteristic potential of selected electrode reactions. In: Scholz F, Pickett CJ (eds) Inorganic electrochemistry, Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 7a. Wiley-VCH, Weinheim, pp 64–66

  19. Schmid GM (1985) Gold. In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solution. Marcel Dekker, New York, p 313

    Google Scholar 

  20. Busev AI, Ivanov VI (1973) Analytical chemistry of gold. Nauka, Moscow, p 28 (in Russian)

    Google Scholar 

  21. Peschevskii BI, Anoshin TN, Ehrenburg AM (1965) Dokl AN USSR 162:915

    Google Scholar 

  22. Cherneva AN (1960) Trudi Uralskogo Polytech Inst 96:134

    Google Scholar 

  23. Morris T, Copeland H, Szulczewski G (2002) Langmuir 18:535. doi:10.1021/la011186y

    Article  CAS  Google Scholar 

  24. Kotowski A (ed) (1954) Gmelins Handbuch der anorganische Chemie, vol 62 (Gold). Verlag Chemie, Weinheim, p 716

  25. Bailar JC, Emeléus HJ, Nyholm R, Trotman-Dickensen AF (eds) (1973) Comprehensive inorganic chemistry, vol 3. Pergamon Press, Oxford New York, p 150

  26. Inzelt G, Puskas Z, Nemeth K, Varga I (2005) J Solid State Electrochem 9:823. doi:10.1007/s10008-005-0019-5

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by bilateral program cooperation between Republic of Croatia and Hungary CRO-01/2006 as well as by national research projects no. 098-0982934-2717 from the Ministry of Science and Technology of the Republic of Croatia (IC and EB-N) and OTKA K71771 from the National Scientific Research Fund, Hungary (GI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Bura-Nakic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bura-Nakic, E., Róka, A., Ciglenecki, I. et al. Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface. J Solid State Electrochem 13, 1935–1944 (2009). https://doi.org/10.1007/s10008-008-0742-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0742-9

Keywords

Navigation