Skip to main content

Advertisement

Log in

Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report the high-rate capability and good cyclability of three-dimension nanoporous NiO films as the anodes of lithium-ion batteries. The NiO films are fabricated by immersing foam nickel substrates in an 80 °C aqueous solution containing ammonia and potassium peroxydisulfate, and subsequent heat treatment at 500 °C. At a rate of 1.0 C, the film electrodes maintain a capacity of 560 mAh g−1 as well as capacity retention of 97% after 100 discharge/charge cycles. When the current density is increased to 14C, 42% of the capacity can be retained. Owing to the ease of large-scale fabrication and superior electrochemical performance, these NiO films will be promising anodes for high-energy-density lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kang K, Meng YS, Berger J, Grey CP, Ceder G (2006) Science 311:977, doi:10.1126/science.1122152

    Article  CAS  Google Scholar 

  2. Chung SY, Blocking JT, Chiang YM (2002) Nat Mater 1:123, doi:10.1038/nmat732

    Article  CAS  Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496, doi:10.1038/35035045

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand A (2001) Nature 414:359, doi:10.1038/35104644

    Article  CAS  Google Scholar 

  5. Arico S, Bruce P, Scrosati B, Tarascon JM, Schalkwijk TV (2005) Nat Mater 4:366, doi:10.1038/nmat1368

    Article  CAS  Google Scholar 

  6. Wang Y, Takahashi K, Lee K, Cao G (2006) Adv Funct Mater 16:1133, doi:10.1002/adfm.200500662

    Article  CAS  Google Scholar 

  7. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567, doi:10.1038/nmat1672

    Article  CAS  Google Scholar 

  8. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Science 312:885, doi:10.1126/science.1122716

    Article  CAS  Google Scholar 

  9. Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B (2006) Adv Mater 18:2597, doi:10.1002/adma.200601232

    Article  CAS  Google Scholar 

  10. Yoshio, Tadahiko K, Akihiro M, Yukio M, Tsutomu M (1997) Science 276:1395, doi:10.1126/science.276.5317.1395

  11. Lee H, Cho J (2007) Nano Lett 7:2638, doi:10.1021/nl071022n

    Article  CAS  Google Scholar 

  12. Moriguchi, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N (2006) Adv Mater 18:69, doi:10.1002/adma.200501366

  13. Yu Y, Chen CH, Shui JL, Xie S (2005) Angew Chem Int Edn 44:7085

    Article  CAS  Google Scholar 

  14. Nuli YN, Zhao SL, Qin QZ (2003) J Power Sources 114:113, doi:10.1016/S0378-7753(02)00531-1

    Article  CAS  Google Scholar 

  15. Wang Y, Qin QZ (2002) J Electrochem Soc 149:A873, doi:10.1149/1.1481715

    Article  CAS  Google Scholar 

  16. Doh CH, Kalaiselvi N, Park CW (2004) Ionics 10:421, doi:10.1007/BF02378003

    Article  CAS  Google Scholar 

  17. Needham SA, Wang GX, Liu HK (2006) J Power Sources 159:254, doi:10.1016/j.jpowsour.2006.04.025

    Article  CAS  Google Scholar 

  18. Needham SA, Wang GX, Liu HK (2006) J Nanoscience Nanotech 6:77

    CAS  Google Scholar 

  19. Yuan L, Guo ZP, Konstantinov K (2006) Electrochem Solid-State Lett 9:A524, doi:10.1149/1.2345550

    Article  CAS  Google Scholar 

  20. Chan CK, Peng H, Twesten RD, Jarausch K, Zhang XF, Cui Y (2007) Nano Lett 7:490, doi:10.1021/nl062883j

    Article  CAS  Google Scholar 

  21. Wang HB, Pan QM, Zhao JW, Yin GP, Zuo PJ (2007) J Power Sources 167:206, doi:10.1016/j.jpowsour.2007.02.008

    Article  CAS  Google Scholar 

  22. Hou HW, Xie Y, Li Q (2005) Cryst Growth Des 5:201, doi:10.1021/cg049972z

    Article  CAS  Google Scholar 

  23. Debart, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) J Electrochem Soc 148:A1266, doi:10.1149/1.1409971

  24. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285, doi:10.1149/1.1353566

    Article  CAS  Google Scholar 

  25. Oh SW, Bang HJ, Bae YC, Sun YK (2007) J Power Sources 173:502, doi:10.1016/j.jpowsour.2007.04.087

    Article  CAS  Google Scholar 

  26. Huang XH, Tu JP, Zhang B, Zhang CQ, Li Y, Yuan YF, Wu HM (2006) J Power Sources 161:541, doi:10.1016/j.jpowsour.2006.03.039

    Article  CAS  Google Scholar 

  27. Ni X, Zhang Y, Tian D, Zheng H, Wang X (2007) J Cryst Growth 306:418, doi:10.1016/j.jcrysgro.2007.05.013

    Article  CAS  Google Scholar 

  28. Wang X, Li L, Zhang YG et al (2006) Cryst Growth Des 6:2163, doi:10.1021/cg060156w

    Article  CAS  Google Scholar 

  29. Chiu KF, Chang CY, Lin CM (2005) J Electrochem Soc 152:A1188, doi:10.1149/1.1906024

    Article  CAS  Google Scholar 

  30. Varghese B, Reddy MV, Zhu Y (2008) Chem Mater 20:3360, doi:10.1021/cm703512k

    Article  CAS  Google Scholar 

  31. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9:1180, doi:10.1016/j.elecom.2007.01.014

    Article  CAS  Google Scholar 

  32. Huang XH, Tu JP, Zhang CQ, Chen XT, Yuan YF, Wu HM (2007) Electrochim Acta 52:4177, doi:10.1016/j.electacta.2006.11.034

    Article  CAS  Google Scholar 

  33. Wang Y, Zhang YF, Liu HR, Yu SJ, Qin QZ (2003) Electrochim Acta 48:4253, doi:10.1016/S0013-4686(03)00612-1

    Article  CAS  Google Scholar 

  34. Huang XH, Tu JP, Zeng ZY, Xiang JY, Zhao XB (2008) J Electrochem Soc 155:A438, doi:10.1149/1.2904878

    Article  CAS  Google Scholar 

  35. Hosono E, Fujihara S, Honma I, Zhou H (2006) Electrochem Commun 8:284, doi:10.1016/j.elecom.2005.11.023

    Article  CAS  Google Scholar 

  36. Li Y, Tan B, Wu Y (2008) Nano Lett 8:265, doi:10.1021/nl0725906

    Article  CAS  Google Scholar 

  37. Morales J, Sanchez L, Tirado JL (1998) J Solid State Electrochem 2:420, doi:10.1007/s100080050120

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by program of excellent team in Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmin Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Q., Liu, J. Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. J Solid State Electrochem 13, 1591–1597 (2009). https://doi.org/10.1007/s10008-008-0740-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0740-y

Keywords

Navigation