Skip to main content

Advertisement

Log in

Hydrogen evolution and oxidation—a prototype for an electrocatalytic reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to progress in the theory of electrocatalysis and in quantum chemistry, it has become possible to investigate the hydrogen reaction and perform quantitative calculations for the reaction rate. First, we demonstrate this with model calculations for the adsorption of hydrogen on Pt(111). In accordance with experimental data, we find hydrogen adsorption at a potential above the equilibrium potential and with an almost vanishing energy of activation. As a second example, we explain trends in the catalytic activity of palladium overlayers and clusters on Au(111) electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the case of hydrogen on Cu(111), this was shown by [22]. According to our own calculations, at Pt(111), it sets in at about the same distance.

References

  1. Tafel J (1905) Z Phys Chem 50:641

    CAS  Google Scholar 

  2. Erdey-Gruz T, Volmer M (1930) Z Phys Chem A 150:203

    CAS  Google Scholar 

  3. Trasatti S (1972) J Electroanal Chem 39:163

    Article  CAS  Google Scholar 

  4. Trasatti S (1977) Adv Electrochem Electrochem Eng 10:213

    CAS  Google Scholar 

  5. Norskøv JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23 (1985) 138.

    Article  Google Scholar 

  6. Conway BE, Beatty EM, DeMaine PAD (1962) Electrochim Acta 7:39

    Article  CAS  Google Scholar 

  7. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  8. Hush NS (1958) J Chem Phys 28:962

    Article  CAS  Google Scholar 

  9. Levich VG (1970) Kinetics of reactions with charge transfer. In: Eyring H, Henderson D, Jost W (eds) Physical chemistry, and advanced treatise, vol Xb. Academic, New York

    Google Scholar 

  10. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) Phys Chem Chem Phys 10:3609

    Article  CAS  Google Scholar 

  11. Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Nørskov JK (2007) Phys Chem Chem Phys 9:3241

    Article  CAS  Google Scholar 

  12. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T (2008) J Phys Soc Jpn 77:024802

    Article  Google Scholar 

  13. Schmickler W (1986) J Electroanal Chem 204:31

    Article  CAS  Google Scholar 

  14. Santos E, Koper MTM, Schmickler W (2006) Chem Phys Lett 419:421

    Article  CAS  Google Scholar 

  15. Santos E, Koper MTM, Schmickler W (2008) Chem Phys 344:195

    Article  CAS  Google Scholar 

  16. Santos E, Schmickler W (2006) Chem Phys Chem 7:2282

    CAS  Google Scholar 

  17. Santos E, Schmickler W (2007) Chem Phys 332:39

    Article  CAS  Google Scholar 

  18. Anderson PW (1961) Phys Rev 124:41

    Article  CAS  Google Scholar 

  19. Newns DM (1969) Phys Rev 178:1123

    Article  CAS  Google Scholar 

  20. Ishikawa Y, Mateo JJ, Tryk DA, Cabrera CR (2007) J Electroanal Chem 607:37

    Article  CAS  Google Scholar 

  21. Santos E, Schmickler W (2007) Angew Chem Int Ed 46:8262

    Article  CAS  Google Scholar 

  22. Mizielinki MS, Bird DM, Persson M, Holloway S (2005) J Chem Phys 22:084710

    Article  Google Scholar 

  23. Santos E, Pötting K, Schmickler W (2008) Discuss Faraday Soc (in press)

  24. Wilhelm F, Schmickler W, Nazmutdinov RR, Spohr E (2008) J Phys Chem C 112:10814

    Article  CAS  Google Scholar 

  25. Schmickler W (1995) Chem Phys Lett 237:152

    Article  CAS  Google Scholar 

  26. Santos E, Schmickler W (2008) Electrochim Acta 43x:6149

    Article  Google Scholar 

  27. Karlsberg GS, Jaramillo TF, Skulason E, Rossmeisl J, Bligaard T, Norskøv JK (2007) Phys Rev Lett 99:126101

    Article  Google Scholar 

  28. Pandelov S, Stimming U (2007) Electrochim Acta 52:5548

    Article  CAS  Google Scholar 

  29. Kibler LA (2006) Chem Phys Chem 7:985

    CAS  Google Scholar 

  30. Hammer B, Nørskov JK (2000) Adv Cat 45:71

    Article  CAS  Google Scholar 

  31. Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U (2004) Chem Phys Lett 90:440

    Article  Google Scholar 

  32. Roudgar A, Groß A (2004) Surf Sci 559:L180

    Article  CAS  Google Scholar 

  33. Hammer B, Hansen LB, Nørskov K (1999) Phys Rev B 59:7413. http://www.fysik.dtu.dk/campos

    Article  Google Scholar 

  34. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  37. Bengtsson L (1999) Phys Rev B 59:12301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Schm 344/34-1 and Sa 1770/1-1), and of the European Union under COST is gratefully acknowledged. E. S. thanks CONICET for continued support. A.L. gratefully acknowledges a postdoctorial fellowship of the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schmickler.

Additional information

Dedicated to J.O’M. Bockris on the occasion of his 85th birthday and in recognition of his contributions to electrochemistry.

Appendix: Details of DFT calculations

Appendix: Details of DFT calculations

All calculations were performed using the DACAPO code [33]. This utilizes an iterative scheme to solve the Kohn–Sham equations of DFT self-consistently. A plane-wave basis set is used to expand the electronic wave functions, and the elecron–ion interactions are accounted through ultrasoft pseudopotentials [34], which allows the use of a low-energy cutoff for the plane-wave basis set. An energy cutoff of 400 eV, dictated by the pseudopotential of each metal, was used in all calculations. The electron–electron exchange and correlation interactions are treated with the generalized gradient approximation in the version of Perdew, Burke, and Ernzerhof [35]. The Brillouin zone integration was performed using a 16 × 16 × 1 k-point Monkhorst–Pack grid [36] corresponding to the (1 × 1) surface unit cell. The surfaces were modeled by a (3 × 3) supercell with four metal layers and six layers of vacuum. Dipole correction was used to avoid slab–slab interactions [37]. The first two top layers were allowed to relax, while the bottom two layers were fixed at the calculated next neighbor distance (Au: 2.95 Å, Pd: 2.82 Å, Pt: 2.83 Å). The optimized surfaces (prerelaxed) in the absence of the hydrogen atom were used as input data to carry out the calculations to study the hydrogen desorption. For each system, we performed a series of calculations for a single atom adsorbed on a fcc hollow site and varied its separation from the surface. The prerelaxed surface was kept fixed while the H was allowed to relax in xy coordinates during these calculations. At each position, we calculated the adsorption energy and the DOS projected onto the 1-s orbital of hydrogen, and from the latter, we obtained the model DOS of Eq. 1 by fitting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, E., Lundin, A., Pötting, K. et al. Hydrogen evolution and oxidation—a prototype for an electrocatalytic reaction. J Solid State Electrochem 13, 1101–1109 (2009). https://doi.org/10.1007/s10008-008-0702-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0702-4

Keywords

Navigation