Journal of Solid State Electrochemistry

, Volume 13, Issue 4, pp 565–571 | Cite as

The current transient for nucleation and diffusion-controlled growth of spherical caps

  • Daniel Branco P.
  • Jorge Mostany
  • Carlos Borrás
  • Benjamin R. Scharifker
Original Paper

Abstract

The contact angle between growing clusters and the electrode surface is taken into consideration in the description of potentiostatic current transients during nucleation and diffusion-controlled growth of three-dimensional phases. It is shown that the non-dimensional plots of the currents normalized with respect to their maxima, and the nucleation rates obtained from analysis of experimental transients are unaffected by the contact angle. The results obtained reveal, however, that consideration of contact angles different from 90° in analysis of experimental current transients lead invariably to lower number densities of active sites for nucleation.

Keywords

Contact angle Nucleation and growth Chronoamperometry Kinetics 

References

  1. 1.
    Scharifker BR, Mostany J (2003) In: Bard AJ, Stratmann M, Calvo EJ (eds) Encyclopedia of electrochemistry. vol. 2. Wiley, New York, p 512Google Scholar
  2. 2.
    Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer, Dordrecht, p 18Google Scholar
  3. 3.
    Mostany J, Mozota J, Scharifker BR (1984) J Electroanal Chem 177:25. doi:10.1016/0022-0728(84)80208-9 CrossRefGoogle Scholar
  4. 4.
    Abyaneh MY (1991) Electrochim Acta 36:727. doi:10.1016/0013-4686(91)85163-2 CrossRefGoogle Scholar
  5. 5.
    Scharifker BR, Hills G (1983) Electrochim Acta 28:879. doi:10.1016/0013-4686(83)85163-9 CrossRefGoogle Scholar
  6. 6.
    Gunawardena G, Hills G, Montenegro I, Scharifker BR (1982) J Electroanal Chem 138:225. doi:10.1016/0022-0728(82)85080-8 CrossRefGoogle Scholar
  7. 7.
    Sluyters-Rehbach M, Wijenberg JHOJ, Bosco E, Sluyters JH (1987) J Electroanal Chem 236:1. doi:10.1016/0022-0728(87)88014-2 CrossRefGoogle Scholar
  8. 8.
    Heerman L, Tarallo A (1999) J Electroanal Chem 470:70. doi:10.1016/S0022-0728(99)00221-1 CrossRefGoogle Scholar
  9. 9.
    Heerman L, Matthijs E, Langerock S (2001) Electrochim Acta 47:905. doi:10.1016/S0013-4686(01)00792-7 CrossRefGoogle Scholar
  10. 10.
    Matthijs E, Langerock S, Michailova E, Heerman L (2004) J Electroanal Chem 570:123. doi:10.1016/j.jelechem.2004.03.024 CrossRefGoogle Scholar
  11. 11.
    Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13. doi:10.1016/0022-0728(84)80207-7 CrossRefGoogle Scholar
  12. 12.
    Alfred LCR, Oldham KB (1996) J Phys Chem 100:2170. doi:10.1021/jp9514685 CrossRefGoogle Scholar
  13. 13.
    Scharifker BR (1992) In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry No 22. Plenum, New York, p 467Google Scholar
  14. 14.
    Scharifker BR, Hills GJ (1981) J Electroanal Chem 130:81Google Scholar
  15. 15.
    Gunawardena GA, Hills GJ, Montenegro I (1978) Electrochim Acta 23:693. doi:10.1016/0013-4686(78)80026-7 CrossRefGoogle Scholar
  16. 16.
    Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New YorkGoogle Scholar
  17. 17.
    Hyde ME, Compton RG (2003) J Electroanal Chem 594:1. doi:10.1016/S0022-0728(03)00250-X CrossRefGoogle Scholar
  18. 18.
    Hyde ME, Jacobs R, Compton RG (2002) J Phys Chem B 106:11075. doi:10.1021/jp0213607 CrossRefGoogle Scholar
  19. 19.
    Milchev A, Michailova E, Lacmann R, Müller-Zülow B (1993) Electrochim Acta 38:535. doi:10.1016/0013-4686(93)85009-N CrossRefGoogle Scholar
  20. 20.
    Palomar-Pardavé M, Scharifker BR, Arce E, Romero-Romo M (2005) Electrochim Acta 50:4736. doi:10.1016/j.electacta.2005.03.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Daniel Branco P.
    • 1
  • Jorge Mostany
    • 1
  • Carlos Borrás
    • 1
  • Benjamin R. Scharifker
    • 1
  1. 1.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations