Skip to main content

Electrochemistry at cobalt(II)tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine

Abstract

Electrochemistry of water-soluble cobalt(II) tetrasulfophthalocyanine (CoTSPc) electrodeposited on glassy carbon nanotube pre-modified with acid-functionalized multi-walled carbon nanotubes (MWCNT) is described. Both charge transfer resistances toward [Fe(CN)6]3−/4− redox probe and electrocatalytic responses toward epinephrine (EP) detection follow the trend: bare GCE < GCE-MWCNT < GCE-CoTSPc < GCE-MWCNT-CoTSPc. EP analysis was then carried out in details using GCE-MWCNT-CoTSPc. The catalytic rate constant value k ch = 2.2 × 107 (mol cm−3)−1 s−1 was obtained from rotating disk electrode experiment. Interestingly, GCE-MWCNT-CoTSPc efficiently suppressed the detection of ascorbic acid (the natural interference of neurotransmitters in physiological conditions) showing good sensitivity (0.132 ± 0.003 A l mol−1), limit of detection (4.517 × 10−7 mol l−1), and quantification (15.056 × 10−7 mol l−1). In addition, GCE-MWCNT-CoTSPc was conveniently used to determine EP in epinephrine hydrochloric acid injection with recovery of 101.1 ± 2.2%.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

References

  1. Iijima S (1991) Nature 354:56–58. doi:10.1038/354056a0

    Article  CAS  Google Scholar 

  2. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Chem Commun (Camb) 2004:1804–1805. doi:10.1039/b406174h

    Article  CAS  Google Scholar 

  3. Salimi A, Banks CE, Compton RG (2004) Analyst (Lond) 129:225–228. doi:10.1039/b315877b

    Article  CAS  Google Scholar 

  4. Di-Zhao Z, Zhang W-De, Cheng H, Luo QM (2002) Talanta 58:529–534. doi:10.1016/S0039-9140(02)00318-1

    Article  Google Scholar 

  5. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 73:915–920. doi:10.1021/ac000967l

    Article  CAS  Google Scholar 

  6. Musameh M, Wang J, Merkoki A, Lin Y (2002) Electrochem Commun 4:743–746. doi:10.1016/S1388-2481(02)00451-4

    Article  CAS  Google Scholar 

  7. Star A, Han TR, Christophe J, Gabriel P, Bradley K, Gruner G (2003) Nano Lett 3:403–407. doi:10.1021/nl025952c

    Article  CAS  Google Scholar 

  8. Leznoff CC, Lever ABP (eds) (1989–1996) Phthalocyanines: properties and applications, Vol. 1–4, VCH, New York

  9. Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook, Chapters 97–122, Vol. 15–20. Academic, Boston

  10. Ozoemena KI, Nyokong T (2006) In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, Vol. 3. American Scientific Publishers, California, p 157 (Chapter E, and references therein)

    Google Scholar 

  11. Imisides MD, John R, Riley PJ, Wallace GG (1991) Electroanalysis 3:879–889. doi:10.1002/elan.1140030903

    Article  CAS  Google Scholar 

  12. Siswana M, Ozoemena KI, Nyokong T (2006) Electrochim Acta 52:114–122. doi:10.1016/j.electacta.2006.03.090

    Article  CAS  Google Scholar 

  13. Pillay J, Ozoemena KI, Nyokong T (2006) Electrochem Commun 8:1391–1396. doi:10.1016/j.elecom.2006.05.031

    Article  CAS  Google Scholar 

  14. Pillay J, Ozoemena KI (2007) Electrochim Acta 52:3630–3640. doi:10.1016/j.electacta.2006.10.022

    Article  CAS  Google Scholar 

  15. Pillay J, Ozoemena KI (2007) Chem Phys Lett 441:72–77. doi:10.1016/j.cplett.2007.04.095

    Article  CAS  Google Scholar 

  16. Silva JF, Griveau S, Richard C, Zagal JH, Bedioui F (2007) Electrochem Commun 9:1629–1634. doi:10.1016/j.elecom.2007.03.008

    Article  CAS  Google Scholar 

  17. Yang Z, Hu G, Chen X, Zhao J, Zhao G (2007) Colloids Surf B 54:230–235. doi:10.1016/j.colsurfb.2006.10.033

    Article  CAS  Google Scholar 

  18. Gong J, Lin X (2004) Electrochim Acta 49:4351–4358. doi:10.1016/j.electacta.2004.04.024

    Article  CAS  Google Scholar 

  19. Ren W, Luo HQ, Li NB (2006) Biosens Bioelectron 21:1086–1092. doi:10.1016/j.bios.2005.04.002

    Article  CAS  Google Scholar 

  20. Wang L, Bai J, Huang P, Wang H, Zhang L, Zhao Y (2006) Electrochem Commun 8:1035–1040. doi:10.1016/j.elecom.2006.04.012

    Article  CAS  Google Scholar 

  21. Li J, Lin X-Q (2007) Anal Chim Acta 596:222–230. doi:10.1016/j.aca.2007.05.057

    Article  CAS  Google Scholar 

  22. Bai JY, Wang L, Wang HJ, Huang PF, Zhao YQ, Fan SD (2006) Mikrochim Acta 156:321–326. doi:10.1007/s00604-006-0597-7

    CAS  Google Scholar 

  23. Wang L, Bai J, Huang P, Wang H, Zhang L, Zhao Y (2006) Int J Electrochem Sci 153:G238–G249. doi:10.1149/1.2162452

    Article  CAS  Google Scholar 

  24. He YB, Luo HQ, Li NB (2007) Instrum Sci Technol 35:163–175. doi:10.1080/10739140601126346

    Article  CAS  Google Scholar 

  25. Ozoemena KI, Nkosi D, Pillay J (2008) Electrochim Acta 53:2844–2851. doi:10.1016/j.electacta.2007.10.076

    Article  CAS  Google Scholar 

  26. Schenk JO, Milker E, Adam RN (1983) J Chem Educ 60:311–314

    CAS  Article  Google Scholar 

  27. Banks WA (2001) Brain Res 899:209–217. doi:10.1016/S0006-8993(01)02242-9

    Article  CAS  Google Scholar 

  28. Wang J, Tuzhi P, Golden T (1987) Anal Chim Acta 194:129–138. doi:10.1016/S0003-2670(00)84766-2

    Article  CAS  Google Scholar 

  29. Liu J, Rinzler AG, Dai H, Hanfer JH, Bradley RK, Boul PJ et al (1998) Science 280:1253–1256. doi:10.1126/science.280.5367.1253

    Article  CAS  Google Scholar 

  30. Weber JH, Busch DH (1965) Inorg Chem 4:472–475. doi:10.1021/ic50026a008

    Article  CAS  Google Scholar 

  31. Lever ABP, Milaeva EL, Speier G (1993) In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and applications, Chapter 1, Vol. 3. VCH, New York, pp 1–69

    Google Scholar 

  32. Tse Y-H, Janda P, Lam H, Pietro WJ, Lever ABP (1997) J Porphyrins Phthalocyanines 1:3–4 doi:10.1002/(SICI)1099-1409(199701)1:1<3::AID-JPP1>3.0.CO;2-V

    Article  CAS  Google Scholar 

  33. Sabatini E, Rubinstein I (1987) J Phys Chem 91:6669–6673. doi:10.1021/j100311a022

    Article  Google Scholar 

  34. Barsoukov E, Macdonald JR (2005) In: Impedance spectroscopy: theory experiment, and applications, Chapters 1–4, 2nd edn. Wiley, Hoboken

  35. MacDonald DD (2006) Electrochim Acta 51:1376–1388. doi:10.1016/j.electacta.2005.02.107

    Article  CAS  Google Scholar 

  36. Chen SM, Peng KT (2003) J Electroanal Chem 547:179–189. doi:10.1016/S0022-0728(03)00220-1

    Article  CAS  Google Scholar 

  37. Agboola BO, Nyokong T (2007) Anal Chim Acta 587:116–123. doi:10.1016/j.aca.2007.01.031

    Article  CAS  Google Scholar 

  38. Ozoemena KI, Nyokong T (2002) Electrochim Acta 47:4035–4043. doi:10.1016/S0013-4686(02)00362-6

    Article  CAS  Google Scholar 

  39. Ureta-Zañartu MS, Berríos C, Pavez J, Zagal J, Gutiérrez C, Marco JF (2003) J Electroanal Chem 553:147–156. doi:10.1016/S0022-0728(03)00309-7

    Article  CAS  Google Scholar 

  40. Li NB, Ren W, Luo HQ (1999) Anal Chim Acta 378:151–157. doi:10.1016/S0003-2670(98)00569-8

    Article  Google Scholar 

  41. Zagal JH, Lira S, Ureta-Zanartu S (1986) J Electroanal Chem 210:95–110. doi:10.1016/0022-0728(86)90316-5

    Article  CAS  Google Scholar 

  42. Collman JP, Kaplun M, Sunderland CJ, Boulatov R (2004) J Am Chem Soc 126:11166–11167. doi:10.1021/ja046768r

    Article  CAS  Google Scholar 

  43. Wang K, Xu JJ, Tang KS, Chen HY (2005) Talanta 67:798–805. doi:10.1016/j.talanta.2005.04.015

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the NRF and the Universities of Pretoria and Limpopo. KIO is grateful to the South Africa’s Department of Science and Technology (DST) and NRF for the Research Infrastructure Support Programme (RISP) Grants (GUN no. 65305). BOA also thanks NRF for Scarce Skill Postdoctoral Fellowship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth I. Ozoemena.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agboola, B.O., Vilakazi, S.L. & Ozoemena, K.I. Electrochemistry at cobalt(II)tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. J Solid State Electrochem 13, 1367–1379 (2009). https://doi.org/10.1007/s10008-008-0691-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0691-3

Keywords

  • Epinephrine
  • Carbon nanotubes
  • Ascorbic acid