Skip to main content
Log in

Structural, spectroscopic, electrochemical and computational studies of C,C′-diaryl-ortho-carboranes, 1-(4-XC6H4)-2-Ph-1,2-C2B10H10 (X = H, F, OMe, NMe2, NH2, OH and O)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of aryl ring substituents X (F, OMe, NMe2, NH2, OH and O) on the physical and electronic structure of the ortho-carborane cage in a series of C,C′-diaryl-ortho-carboranes, 1-(4-XC6H4)-2-Ph-1,2-C2B10H10 has been investigated by crystallographic, spectroscopic [nuclear magnetic resonance (NMR), UV–vis], electrochemical and computational methods. The cage C1–C2 bond lengths in this carborane series show small variations with the electron-donating strength of the substituent X, but there is no evidence of a fully evolved quinoid form within the aryl substituents in the ground state. In the 11B and 13C NMR spectra, the ‘antipodal’ shift at B12, and the C1 shift correlates with the Hammett σ p value of the substituent X. The UV–visible absorption spectra of the cluster compounds show marked differences when compared with the spectra of the analogous substituted benzenes. These spectroscopic differences are attributed to variation in contributions from the cage orbitals to the unoccupied/virtual orbitals involved in the transitions responsible for the observed absorption bands. Electrochemical studies (cyclic and square-wave voltammetry) carried out on the diarylcarborane series reveal that one-electron reduction takes place at the cage in every case with the voltage required for reduction of the cage influenced by the electron-donating strength of the substituent X, affording a series of carborane radicals with formal [2n + 3] electron counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wiesboeck RA, Hawthorne MF (1964) J Am Chem Soc 86:1642

    Article  CAS  Google Scholar 

  2. Hawthorne MF, Young DC, Garrett PM, Owen DA, Schwerin SG, Tebbe FN, Wegner PA (1968) J Am Chem Soc 90:862

    Article  CAS  Google Scholar 

  3. Tomita H, Luu H, Onak T (1991) Inorg Chem 30:812

    Article  CAS  Google Scholar 

  4. Fox MA, Goeta AE, Hughes AK, Johnson AL (2002) J Chem Soc Dalton Trans 2132

  5. Davidson MG, Fox MA, Hibbert TG, Howard JAK, Mackinnon A, Neretin IS, Wade K (1999) Chem Commun 1649

  6. Hawthorne MF, Young DC, Andrews TD, Howe DV, Pilling RL, Pitts AD, Reintjes M, Warren LF, Wegner PA (1968) J Am Chem Soc 90:879

    Article  CAS  Google Scholar 

  7. Warren LF, Hawthorne MF (1968) J Am Chem Soc 90:4823

    Article  CAS  Google Scholar 

  8. Spencer JL, Stone FGA, Green M (1972) J Chem Soc Chem Commun 1178

  9. Mingos DMP, Forsyth MI, Welch AJ (1978) J Chem Soc Dalton Trans 1363

  10. Fox MA, Hughes AK, Johnson AL, Paterson MAJ (2002) J Chem Soc Dalton Trans 2132

  11. Colquhoun HM, Greenhough TJ, Wallbridge MGH (1978) J Chem Soc Dalton Trans 303

  12. Fontaine XLR, Greenwood NN, Kennedy JD, Nestor K, Thornton-Pett M, Heřmanek S, Jelínek T, Štíbr B (1990) J Chem Soc Dalton Trans 681

  13. Gradler U, Weller AS, Welch AJ, Reed D (1996) J Chem Soc Dalton Trans 335

  14. Brown DA, Clegg W, Colquhoun HM, Daniels JA, Stephenson IR, Wade K (1987) J Chem Soc Chem Commun 889

  15. Getman TD, Knobler CB, Hawthorne MF (1990) J Am Chem Soc 112:4593

    Article  CAS  Google Scholar 

  16. Coult R, Fox MA, Gill WR, Wade K, Clegg W (1992) Polyhedron 11:2717

    Article  CAS  Google Scholar 

  17. Llop J, Viñas C, Oliva JM, Teixidor F, Flores MA, Kivekäs R, Sillanpää R (2002) J Organomet Chem 657:232

    Article  CAS  Google Scholar 

  18. Laromaine A, Viñas C, Sillanpää R, Kivekäs R (2004) Acta Crystallogr C 50:2027

    Google Scholar 

  19. Oliva JM, Allan NL, Schleyer PVR, Viñas C, Teixidor F (2005) J Am Chem Soc 127:13538

    Article  CAS  Google Scholar 

  20. Batsanov AS, Fox MA, Hibbert TG, Howard JAK, Kivekäs R, Laromaine A, Sillanpää R, Viñas C, Wade K (2004) Dalton Trans 3822

  21. Chui K, Li H-W, Xie Z (2000) Organometallics 19:5447

    Article  CAS  Google Scholar 

  22. Boyd LA, Clegg W, Copley RCB, Davidson MG, Fox MA, Hibbert TG, Howard JAK, Mackinnon A, Peace RJ, Wade K (2004) Dalton Trans 2786

  23. Dunks GB, Wiersema RJ, Hawthorne MF (1973) J Am Chem Soc 95:3174

    Article  CAS  Google Scholar 

  24. Stanko VI, Babushkina TA, Brattsev VA, Klimova TP, Alymov AM, Vassilyev AM, Knyazev SP (1974) J Organomet Chem 78:313

    Article  CAS  Google Scholar 

  25. Dunks GB, McKown MM, Hawthorne MF (1971) J Am Chem Soc 93:2541

    Article  Google Scholar 

  26. Dustin DF, Dunks GB, Hawthorne MF (1973) J Am Chem Soc 95:1109

    Article  CAS  Google Scholar 

  27. Evans WJ, Dunks GB, Hawthorne MF (1973) J Am Chem Soc 95:4565

    Article  CAS  Google Scholar 

  28. Burke A, Ellis D, Ferrer D, Ormsby DL, Rosair GM, Welch AJ (2005) Dalton Trans 1716

  29. Ellis D, Lopez ME, McIntosh R, Rosair GM, Welch AJ, Quenardelle R (2005) Chem Commun 1348

  30. Yarosh MV, Baranova TV, Shirokii VL, Érdman AA, Maier NA (1993) Élektrokhimiya (Engl Transl) 29:1125

    Google Scholar 

  31. Yarosh MV, Baranova TV, Shirokii VL, Érdman AA, Maier NA (1994) Russ J Electrochem 30:366

    Google Scholar 

  32. Fox MA, Nervi C, Crivello A, Low PJ (2007) Chem Commun 2372

  33. Lewis ZG, Welch AJ (1993) Acta Crystallogr C 49:705

    Article  Google Scholar 

  34. McGrath TD, Welch AJ (1995) Acta Crystallogr C 51:654

    Article  Google Scholar 

  35. Thomas RL, Welch AJ (1999) Polyhedron 18:1961

    Article  CAS  Google Scholar 

  36. Venkatasubramanian U, Donohoe DJ, Ellis D, Giles BT, Macgregor SA, Robertson S, Rosair GM, Welch AJ, Batsanov AS, Boyd LA, Copley RCB, Fox MA, Howard JAK, Wade K (2004) Polyhedron 23:629

    Article  CAS  Google Scholar 

  37. Batsanov AS, Clegg W, Copley RCB, Fox MA, Gill WR, Grimditch RS, Hibbert TG, Howard JAK, MacBride JAH, Wade K (2006) Polyhedron 25:300

    Article  CAS  Google Scholar 

  38. Vyakaranam K, Li S, Zheng C, Hosmane NS (2001) Inorg Chem Commun 4:180

    Article  CAS  Google Scholar 

  39. Songkram C, Takaishi K, Yamaguchi K, Kagechika H, Endo Y (2001) Tetrahedron Lett 42:6365

    Article  CAS  Google Scholar 

  40. Balema V, Blaurock S, Hey-Hawkins E (1998) Z Naturforsch B Chem Sci 53:1273

    CAS  Google Scholar 

  41. Fein MM, Bobinski J, Myers N, Schwartz N, Cohen MS (1963) Inorg Chem 2:1111

    Article  CAS  Google Scholar 

  42. Fox MA (2007) Polyhedral carboranes. In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III, vol 3 (edited by C.E. Housecroft). Elsevier, Oxford, p 49

    Chapter  Google Scholar 

  43. Causey PW, Besanger TR, Valliant JF (2008) J Med Chem 51:2833

    Article  CAS  Google Scholar 

  44. Steed JW (2003) CrystEngComm 5:169

    Article  CAS  Google Scholar 

  45. Brock CP, Duncan LL (1994) Chem Mater 6:1307

    Article  CAS  Google Scholar 

  46. Gavezzotti A, Fillippini G (1994) J Phys Chem 98:4831

    Article  CAS  Google Scholar 

  47. Alekseyeva ES, Fox MA, Howard JAK, MacBride JAH, Wade K (2003) Appl Organomet Chem 17:499

    Article  CAS  Google Scholar 

  48. Glukhov IV, Antipin MY, Lyssenko KA (2004) Eur J Inorg Chem 1379

  49. Tsuji M (2004) J Org Chem 69:4063

    Article  CAS  Google Scholar 

  50. Clegg W, Coult R, Fox MA, Gill WR, MacBride JAH, Wade K (1993) Polyhedron 12:2711

    Article  CAS  Google Scholar 

  51. Kivekäs R, Sillanpää R, Teixidor F, Viñas C, Nuñez R (1994) Acta Crystallogr C 50:2027

    Article  Google Scholar 

  52. Homer MJ, Holman KT, Ward MD (2001). Angew Chem Int Ed Engl 40:4045

    Google Scholar 

  53. Fukuyo M, Hirotsu K, Higuchi T (1982). Acta Cryst B 38:640

    Google Scholar 

  54. Fox MA, MacBride JAH, Peace RJ, Wade K (1998) J Chem Soc, Dalton Trans 401

  55. Heřmanek S (1999) Inorg Chim Acta 289:20

    Article  Google Scholar 

  56. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  57. Leites LA, Vinogradova LE, Kalinin VN, Zakharkin LI (1970) Bull Acad Sci USSR, Div Chem Sci 2437

  58. Inagaki T (1972) J Chem Phys 57:2526

    Article  CAS  Google Scholar 

  59. Fu X, Chan H-S, Xie Z (2007) J Am Chem Soc 129:8964

    Article  CAS  Google Scholar 

  60. Brown DA, Colquhoun HM, Daniels JA, MacBride JAH, Stephenson IR, Wade K (1992) J Mater Chem 2:793

    Article  CAS  Google Scholar 

  61. Endo Y, Songkram C, Yamasaki R, Tanatani A, Kagechika H, Takaishi K, Yamaguchi K (2002) J Organomet Chem 657:48

    Article  CAS  Google Scholar 

  62. Sogbein OO, Green AEC, Schaffer P, Chankalal R, Lee E, Healy BD et al (2005) Inorg Chem 44:9574

    Article  CAS  Google Scholar 

  63. SHELXTL Version 5.10. Bruker AXS: Madison, Wisconsin, USA, 1997

  64. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT, 2004

  65. Onak TP, Landesman HL, Williams RE (1959) J Phys Chem 63:1533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC and Regione Piemonte for generous financial support and the University of Durham High Performance Computing centre for computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Low.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(CIF 281 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, M.A., Nervi, C., Crivello, A. et al. Structural, spectroscopic, electrochemical and computational studies of C,C′-diaryl-ortho-carboranes, 1-(4-XC6H4)-2-Ph-1,2-C2B10H10 (X = H, F, OMe, NMe2, NH2, OH and O). J Solid State Electrochem 13, 1483–1495 (2009). https://doi.org/10.1007/s10008-008-0686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0686-0

Keywords

Navigation