Nanocomposite solar cells: the requirement and challenge of kinetic charge separation

Abstract

Nanocrystalline solar cells promise significant advantages with respect to cost-efficient mass production, since they do not require imprinted chemical potential gradients for charge separation (e.g., electrical fields generated by p, n doping, which should last for one to three decades). They, however, require kinetic charge separation and chemical electronic mechanisms, which rectify photocurrents for energy conversion. Such mechanisms are presently not well understood, since the existing nanosolar cells (dye and polymer solar cells) have evolved largely empirically. It is shown in this paper that function and properties of kinetically determined solar cells can be derived from irreversible thermodynamic principles considering minimum entropy production (or the principle of least action) and involve solid-state electrochemical processes. Based on this model, presently studied nanosolar cells and also the primary photosynthetic mechanism are analyzed to identify the most significant physical–chemical factors involved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Grätzel M (2003) J Photochem Photobiol C Photochem Rev 4:145 doi:10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  2. 2.

    Sommerling PM, Späth M, Smit HJP, Bakker NJ, Kroon JM (2004) Photochem Photobiol A 164:137 doi:10.1016/j.jphotochem.2003.12.017

    Article  CAS  Google Scholar 

  3. 3.

    Tributsch H (2004) Coord Chem Rev 284:1511 doi:10.1016/j.ccr.2004.05.030

    Article  CAS  Google Scholar 

  4. 4.

    Gunes S, Sariciftci NS (2008) Inorg Chim Acta 361:581 doi:10.1016/j.ica.2007.06.042

    Article  CAS  Google Scholar 

  5. 5.

    Jorgensen M, Norrman K, Krebs FC (2008) Sol Energy Mater Sol Cells 92:686 doi:10.1016/j.solmat.2008.01.005

    Article  CAS  Google Scholar 

  6. 6.

    Barkschat A, Moehl T, Macht B, Tributsch H (2008) Int J Photoenergy. doi:10.1155/2008/814951

  7. 7.

    Tributsch H (2006) CR Chimie 9:596

    Google Scholar 

  8. 8.

    Meier H (1965) J Phys Chem 69:719 doi:10.1021/j100887a003

    Article  CAS  Google Scholar 

  9. 9.

    Gerischer H, Michel-Beyerle ME, Rebentrost F, Tributsch H (1968) Electrochim Acta 13:1509 doi:10.1016/0013-4686(68)80076-3

    Article  CAS  Google Scholar 

  10. 10.

    Tributsch H, Gerischer H (1969) Ber Bunsenges Phys Chem 73:850

    CAS  Google Scholar 

  11. 11.

    Tributsch H (1968) An electrochemical technique for the study of spectral sensitization and of heterogeneous photochemical reactions on ZnO electrodes. PhD Thesis, Technical University Munich

  12. 12.

    Tributsch H, Calvin M (1971) Photochem Photobiol 14:95 doi:10.1111/j.1751-1097.1971.tb06156.x

    Article  CAS  Google Scholar 

  13. 13.

    Tributsch H (1972) Photochem Photobiol 16:261

    CAS  Article  Google Scholar 

  14. 14.

    Tsubomura H, Matsumura M, Nomura Y, Amamya T (1976) Nature 261:402

    Article  CAS  Google Scholar 

  15. 15.

    Alonso-Vante N, Beley M, Chartier P, Ern V (1981) Rev Phy Appl 16:5

    Google Scholar 

  16. 16.

    Matsumura M, Matsudaira S, Tsubomura H, Takata M, Yanagida H (1980) Ind Eng Chem Prod Res Dev 19:4157 doi:10.1021/i360075a025

    Article  Google Scholar 

  17. 17.

    O'Regan B, Grätzel M (1991) Nature 353:373 doi:10.1038/353737a0

    Article  Google Scholar 

  18. 18.

    Yu G, Gao J, Hummelen JC, Wufl F, Heeger AJ (1995) Science 270:178 doi:10.1126/science.270.5243.1789

    Article  Google Scholar 

  19. 19.

    Sariciftci NS, Heeger AJ (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, vol. 1. Wiley, New York

    Google Scholar 

  20. 20.

    Bockris JO’M (1980) Energy options: real economics and the solar—hydrogen system. Australian und New Zealand Book Company, Sydney

    Google Scholar 

  21. 21.

    Würfel P (2005) Physics of solar cells. from principles to new concepts. Wiley, Weinheim

    Google Scholar 

  22. 22.

    Smestad G, Ries R (1992) Sol Energ Mater Sol Cells 25:51 doi:10.1016/0927-0248(92)90016-I

    Article  CAS  Google Scholar 

  23. 23.

    Luque A, Marty A (1997) Phys Rev B 55:6994 doi:10.1103/PhysRevB.55.6994

    Article  CAS  Google Scholar 

  24. 24.

    Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New York

    Google Scholar 

  25. 25.

    Pohlmann L, Tributsch H (1997) Electrochim Acta 42:2737 doi:10.1016/S0013-4686(97)00078-9

    Article  CAS  Google Scholar 

  26. 26.

    Tributsch H, Pohlmann L (1995) J Electroanal Chem 396:53

    Article  Google Scholar 

  27. 27.

    Tributsch H, Pohlmann L (1997) J Electroanal Chem 438:37

    Article  CAS  Google Scholar 

  28. 28.

    Tributsch H, Pohlmann L (1998) Science 279:1891

    Article  CAS  Google Scholar 

  29. 29.

    Hoff AJ (1984) Quart Rev Biophys 17:153

    Article  CAS  Google Scholar 

  30. 30.

    Jeschke G, Matysik J (2003) Chem Phys 294:239

    Article  CAS  Google Scholar 

  31. 31.

    Jeranko T, Tributsch H, Sariciftci NS, Hummelen JC (2004) Sol Energy Mater Sol Cells 83:247

    Article  CAS  Google Scholar 

  32. 32.

    Rispen MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Chem Commun 17:2116

    Article  CAS  Google Scholar 

  33. 33.

    Kuang D, Klein C, Ito S et al (2007) Adv Mater 19:1133

    Article  CAS  Google Scholar 

  34. 34.

    Tributsch H (1994) Solar Energy Mater Solar Cells 31:548

    Article  CAS  Google Scholar 

  35. 35.

    Tributsch H (1997) Catal Today 39:177

    Article  CAS  Google Scholar 

  36. 36.

    Moehl T, Abd El Halim M, Tributsch H (2006) J Appl Electrochem 36:1341

    Article  CAS  Google Scholar 

  37. 37.

    Thomalla M, Tributsch H (2006) J Phys Chem B 110:12167

    Article  CAS  Google Scholar 

  38. 38.

    Sirimanne PM, Tributsch H (2003) J Solid State Chem 177:1789

    Article  CAS  Google Scholar 

  39. 39.

    Nozik AJ (2002) Physica E 14:115

    Article  CAS  Google Scholar 

  40. 40.

    Luque A, Marti A, Nozik AJ (2007) MRS Bulletin 32:236

    CAS  Google Scholar 

  41. 41.

    Pohlmann L, Tributsch H (1992) J Theor Biol 155:443

    Article  CAS  Google Scholar 

  42. 42.

    Pohlmann L, Tributsch H (1992) J Theor Biol 156:63

    Article  CAS  Google Scholar 

  43. 43.

    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Rispens MT, Sanchez L, Hummelen JC, Fromherz T (2002) Thin Solid Films 403–404:368

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helmut Tributsch.

Additional information

Dedicated to the 85th birthday of John O’M. Bockris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tributsch, H. Nanocomposite solar cells: the requirement and challenge of kinetic charge separation. J Solid State Electrochem 13, 1127–1140 (2009). https://doi.org/10.1007/s10008-008-0668-2

Download citation

Keywords

  • Nanocomposite solar cells
  • Dye solar cells
  • Photosynthetic membrane
  • Kinetic charge separation
  • Irreversible thermodynamics