Journal of Solid State Electrochemistry

, Volume 13, Issue 6, pp 905–912 | Cite as

Study of capacitive properties for LT-Li4Mn5O12 in hybrid supercapacitor

  • Yan-Jing Hao
  • Yan-Ying Wang
  • Qiong-Yu Lai
  • Yan Zhao
  • Lian-Mei Chen
  • Xiao-Yang Ji
Original Paper

Abstract

Spinel Li4Mn5O12 nanoparticles have been prepared by a very simple sol–gel method. Various initial conditions were studied in order to find the optimal conditions for the synthesis of pure Li4Mn5O12. X-ray diffraction results showed that spinel Li4Mn5O12 was obtained at a low temperature of 300 °C without any miscellaneous phase. Scanning electron microscope analyses indicated that the prepared Li4Mn5O12 powders had a uniform morphology with average particle size of about 50 and 100 nm. The prepared sample was firstly used as a cathode material in an asymmetric Li4Mn5O12/AC supercapacitor in aqueous electrolyte. The capacitive properties of the hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. The results showed that Li4Mn5O12 annealed at 450 °C for 4 h exhibited the best electrochemical capacitive performance within the potential range of 0–1.4 V in 1 M Li2SO4 solution. A maximum specific capacitance of 43 F g−1 based on the total active material weight of the two electrodes was obtained for the Li4Mn5O12/AC supercapacitor at a current density of 100 mA g−1. The capacitor showed excellent cycling performance and structure stability via 1,000 cycles.

Keywords

Spinel Li4Mn5O12 Capacitive properties Hybrid supercapacitor Aqueous electrolyte 

References

  1. 1.
    Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) J Electrochem Soc 148:A930, doi:10.1149/1.1383553 CrossRefGoogle Scholar
  2. 2.
    Huang BH, Yang P, Zhang BH, Shi QM (2006) J Power Sources 30:560, ChineseGoogle Scholar
  3. 3.
    Chen F, Li RG, Hou M, Liu L, Wang R, Deng ZH (2005) Electrochim Acta 51:61, doi:10.1016/j.electacta.2005.03.047 CrossRefGoogle Scholar
  4. 4.
    Pasquier AD, Laforgue A, Simon P (2004) J Power Sources 125:95, doi:10.1016/j.jpowsour.2003.07.015 CrossRefGoogle Scholar
  5. 5.
    Wang YG, Xia YY (2006) J Electrochem Soc 153:A450, doi:10.1149/1.2140678 CrossRefGoogle Scholar
  6. 6.
    Wang YG, Lou JY, Wu W, Wang CX, Xia YY (2007) J Electrochem Soc 154:A228, doi:10.1149/1.2432056 CrossRefGoogle Scholar
  7. 7.
    Wang YG, Lou JY, Wang CX, Xia YY (2006) J Electrochem Soc 153:A1425, doi:10.1149/1.2203772 CrossRefGoogle Scholar
  8. 8.
    Scrosati B, Panero S, Reale P, Satolli D, Aihara Y (2002) J Power Sources 105:161, doi:10.1016/S0378-7753(01)00935-1 CrossRefGoogle Scholar
  9. 9.
    Julien CM, Massot M, Zaghib K (2004) J Power Sources 136:72, doi:10.1016/j.jpowsour.2004.05.001 CrossRefGoogle Scholar
  10. 10.
    Zaghib K, Armand M, Gauthier M (1998) J Electrochem Soc 145:3135, doi:10.1149/1.1838776 CrossRefGoogle Scholar
  11. 11.
    Zaghib K, Simoneau M, Armand M, Gauthier M (1999) J Power Sources 300:81–82, doi:10.1016/S0378-7753(99)00209-8 Google Scholar
  12. 12.
    Tarascon JM, Wang E, Shokoohi FK (1991) J Electrochem Soc 138:2859, doi:10.1149/1.2085330 CrossRefGoogle Scholar
  13. 13.
    Wen SJ, Richardson TJ, Ma L (1996) J Electrochem Soc 143:L136, doi:10.1149/1.1836902 CrossRefGoogle Scholar
  14. 14.
    Levi E, Levi MD, Salitra G (1999) Solid State Ionics 126:109, doi:10.1016/S0167-2738(99)00219-2 CrossRefGoogle Scholar
  15. 15.
    Park YJ, Kim JG, Kim MK (2000) Solid State Ionics 130:203, doi:10.1016/S0167-2738(00)00551-8 CrossRefGoogle Scholar
  16. 16.
    Liu DQ, He ZZ, Liu XQ (2007) Mater Lett 61:4703, doi:10.1016/j.matlet.2007.03.012 CrossRefGoogle Scholar
  17. 17.
    Zeng RH, Li WS, Lu DS, Huang QM (2007) J Power Sources 174:592, doi:10.1016/j.jpowsour.2007.06.120 CrossRefGoogle Scholar
  18. 18.
    Ohzuku T, Kitagawa M, Hirayi T (1990) J Electrochem Soc 137:769, doi:10.1149/1.2086552 CrossRefGoogle Scholar
  19. 19.
    Thackeray MM, De Kock A, Rossouw MH (1992) J Electrochem Soc 139:363, doi:10.1149/1.2069222 CrossRefGoogle Scholar
  20. 20.
    Liu D-Q, He Z-Z, Liu X-Q (2007) J Alloy Comp 440:69, doi:10.1016/j.jallcom.2006.09.013 CrossRefGoogle Scholar
  21. 21.
    Thackeray MM, Mansuetto MF, Johnson CS (1996) J Solid State Chem 125:274, doi:10.1006/jssc.1996.0297 CrossRefGoogle Scholar
  22. 22.
    Takada T, Hayakawa H, Akiba E, Chakoumakos BC (1997) J Power Sources 68:613, doi:10.1016/S0378-7753(96)02570-0 CrossRefGoogle Scholar
  23. 23.
    Julien CM, Zaghib K (2004) Electrochim Acta 50:411, doi:10.1016/j.electacta.2004.03.052 CrossRefGoogle Scholar
  24. 24.
    Singhal A, Skandan G, Amatucci G (2004) J Power Sources 129:38, doi:10.1016/j.jpowsour.2003.11.010 CrossRefGoogle Scholar
  25. 25.
    Brett A, Deborah J, Roziere J, Burns J, Gary R (1995) Chem Mater 7:2151, doi:10.1021/cm00059a024 CrossRefGoogle Scholar
  26. 26.
    Hu CC, Wang CC (2002) J. Electrochem Commun 4:554, doi:10.1016/S1388-2481(02)00371-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yan-Jing Hao
    • 1
  • Yan-Ying Wang
    • 1
  • Qiong-Yu Lai
    • 1
  • Yan Zhao
    • 1
  • Lian-Mei Chen
    • 1
  • Xiao-Yang Ji
    • 2
  1. 1.College of ChemistrySichuan UniversityChengduChina
  2. 2.Analyzing and Testing CenterSichuan UniversityChengduChina

Personalised recommendations