Skip to main content
Log in

Nickel–poly(o-aminophenol)-modified carbon paste electrode; an electrocatalyst for methanol oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a modified carbon paste electrode consisting of Nickel dispersed in poly(ortho-aminophenol) was used for electrocatalytic oxidation of methanol in alkaline solution. A carbon paste electrode bulk modified with o-aminophenol was used for polymer preparation by cyclic voltammetry method; then, Ni(II) ions were incorporated by immersion of the modified electrode in 1 M Ni(II) ion solution at open circuit. The electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)–Ni(II) couple. Electrocatalytic oxidation of methanol on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods, and the dependence of the oxidation current and shape of cyclic voltammograms on methanol concentration and scan rate were discussed. Also, long-term stability of modified electrode for electrocatalytic oxidation of methanol was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Appleby AJ, Foulkess FR (1989) Fuel cell handbook. Van Nostrand Reinhold, New York Ch 11

    Google Scholar 

  2. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14 doi:10.1016/S0022-0728(98)00197-1

    Article  CAS  Google Scholar 

  3. Ren X, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) J Power Sources 86:111 doi:10.1016/S0378-7753(99)00407-3

    Article  CAS  Google Scholar 

  4. Wei Z, Guo H, Tang Z (1996) J Power Sources 58:239 doi:10.1016/S0378-7753(96)02389-0

    Article  CAS  Google Scholar 

  5. Lamy C, Lima A, Rhun VL, Coutanceau C, Leger JM (2002) J Power Sources 105:283 doi:10.1016/S0378-7753(01)00954-5

    Article  CAS  Google Scholar 

  6. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) J Power Sources 134:60

    Google Scholar 

  7. Verma A, Basu S (2005) J Power Sources 145:282 doi:10.1016/j.jpowsour.2004.11.071

    Article  CAS  Google Scholar 

  8. Heli H, Jafarian M, Mahjani MG, Gobal F (2004) Electrochim Acta 49:4999 doi:10.1016/j.electacta.2004.06.015

    Article  CAS  Google Scholar 

  9. Jafarian M, Mahjani MG, Heli H, Gobal F, Khajehsharifi H, Hamedi MH (2003) Electrochim Acta 48:423 doi:10.1016/S0013-4686(03)00399-2

    Article  CAS  Google Scholar 

  10. Parsons R, Vander Noot T (1988) J Electroanal Chem 257:9 doi:10.1016/0022-0728(88)87028-1

    Article  CAS  Google Scholar 

  11. Nishimura K, Machida K, Enyo M (1988) J Electroanal Chem 251:117 doi:10.1016/0022-0728(88)80389-9

    Article  CAS  Google Scholar 

  12. Emilia M, Fracisco JC, Joseluis VZ, Antomo A (1992) Electrochim Acta 37:1883 doi:10.1016/0013-4686(92)85094-2

    Article  Google Scholar 

  13. Biswas PC, Nodasaka Y, Enyo M (1996) J Appl Electrochem 26:30 doi:10.1007/BF00248185

    Article  CAS  Google Scholar 

  14. Tripkovic AV, Marinkovic N, Popovic KD, Adzic RR (1995) Russ J Electrochem 31:993

    CAS  Google Scholar 

  15. Xu CW, Shen PK (2004) Chem Commun (Camb) 19:2238 doi:10.1039/b408589b

    Article  CAS  Google Scholar 

  16. Wei ZD, Chan SH (2004) J Electroanal Chem 569:23 doi:10.1016/j.jelechem.2004.01.034

    Article  CAS  Google Scholar 

  17. Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2006) J Power Sources 156:345 doi:10.1016/j.jpowsour.2005.05.093

    Article  CAS  Google Scholar 

  18. Xu CW, Shen PK (2005) J Power Sources 142:27 doi:10.1016/j.jpowsour.2004.10.017

    Article  CAS  Google Scholar 

  19. Hu CC, Liu KY (1999) Electrochim Acta 44:2727 doi:10.1016/S0013-4686(98)00400-9

    Article  CAS  Google Scholar 

  20. Tripkovic AV, Popovic KD, Momcilovic JD, Drazic DM (1998) Electrochim Acta 44:1135 doi:10.1016/S0013-4686(98)00216-3

    Article  CAS  Google Scholar 

  21. Schell M (1998) J Electroanal Chem 457:221 doi:10.1016/S0022-0728(98)00315-5

    Article  CAS  Google Scholar 

  22. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H et al (2005) Electrochim Acta 50:5384

    Article  CAS  Google Scholar 

  23. Green CL, Kucernak A (2002) J Phys Chem 106B:106

    Google Scholar 

  24. Safarian HM, Srininvasan R, Chu D, Gilman S (1998) Electrochim Acta 44:1447 doi:10.1016/S0013-4686(98)00268-0

    Article  Google Scholar 

  25. Lio L, Pu C, Viswanathan R, Fan Q, Liu R, Smotkin ES (1998) Electrochim Acta 43:3657 doi:10.1016/S0013-4686(98)00123-6

    Article  Google Scholar 

  26. Ciszewski A, Milczarek G, Lewandowska B, Krutowski K (2003) Electroanalysis 15:518 doi:10.1002/elan.200390062

    Article  CAS  Google Scholar 

  27. Agboola B, Nyokong T (2007) Electrochim Acta 52:5039 doi:10.1016/j.electacta.2007.02.017

    Article  CAS  Google Scholar 

  28. Samant PV, Fernandes JB (1999) J Power Sources 79:114 doi:10.1016/S0378-7753(99)00043-9

    Article  CAS  Google Scholar 

  29. Ureta-Zanartu MS, Alarcon A, Munoz G, Gutierrez C (2007) Electrochim Acta 52:7857 doi:10.1016/j.electacta.2007.06.055

    Article  CAS  Google Scholar 

  30. Obirai J, Bedioui F, Nyokong T (2005) J Electroanal Chem 576:323 doi:10.1016/j.jelechem.2004.11.006

    Article  CAS  Google Scholar 

  31. Xu C, Hu Y, Rong J, Jiang SP, Liu Y (2007) Electrochem Commun 9:2009 doi:10.1016/j.elecom.2007.05.028

    Article  CAS  Google Scholar 

  32. Kulesza PJ, Matczak M, Wolkiewicz A, Grzybowska B, Galkowski M, Malik MA et al (1999) Electrochim Acta 44:2131 doi:10.1016/S0013-4686(98)00321-1

    Article  CAS  Google Scholar 

  33. Castro Luna AM (2000) J Appl Electrochem 30:1137 doi:10.1023/A:1004050922065

    Article  Google Scholar 

  34. Mikhaylova AA, Khazova OA, Bagotzky VS (2000) J Electroanal Chem 480:225 doi:10.1016/S0022-0728(99)00464-7

    Article  CAS  Google Scholar 

  35. Delime F, Leger JM, Lamy C (1999) J Appl Electrochem 29:1249 doi:10.1023/A:1003788400636

    Article  CAS  Google Scholar 

  36. Venancio EC, Napporn WT, Motheo AJ (2002) Electrochim Acta 47:1495 doi:10.1016/S0013-4686(01)00877-5

    Article  CAS  Google Scholar 

  37. Golabi SM, Nozad A (2004) Electroanalysis 16:199 doi:10.1002/elan.200302768

    Article  CAS  Google Scholar 

  38. Liu SJ (2004) Electrochim Acta 49:3235 doi:10.1016/j.electacta.2004.02.038

    Article  CAS  Google Scholar 

  39. Perez-Morales M, Munoz E, Martın-Romero MT, Camacho L (2005) Langmuir 21:5468 doi:10.1021/la0470683

    Article  CAS  Google Scholar 

  40. Maximovitch S, Bronoel G (1981) Electrochim Acta 26:1331 doi:10.1016/0013-4686(81)85118-3

    Article  CAS  Google Scholar 

  41. Ojani R, Raoof JB, Afagh PS (2004) J Electroanal Chem 571:1 doi:10.1016/j.jelechem.2004.03.032

    Article  CAS  Google Scholar 

  42. Ojani R, Raoof JB, Hoseini SR (2007) Electrochim Acta 53:2402

    Article  CAS  Google Scholar 

  43. Goncalves D, Faria RC, Yonashiro M, Bulhoes LOS (2000) J Electroanal Chem 487:90 doi:10.1016/S0022-0728(00)00151-0

    Article  CAS  Google Scholar 

  44. Hernandez N, Ortega JM, Choy M, rtiz R (2001) J Electroanal Chem 515:123 doi:10.1016/S0022-0728(01)00619-2

    Article  CAS  Google Scholar 

  45. Eramo FD, Marioli JM, Arevalo AA, Sereno LE (1999) Electroanalysis 11:481 doi:10.1002/(SICI)1521-4109(199906)11:7<481::AID-ELAN481>3.0.CO;2-7

    Article  Google Scholar 

  46. Casella IG, Cataldi TRI, Guerrieri A, Desimoni E (1996) Anal Chim Acta 335:217 doi:10.1016/S0003-2670(96)00351-0

    Article  CAS  Google Scholar 

  47. Pham MT, Maitz MF, Richter E, Reuther H, Prokert F, Mucklich A (2004) J Electroanal Chem 572:185 doi:10.1016/j.jelechem.2004.06.011

    Article  CAS  Google Scholar 

  48. Majdi S, Jabbari A, Helli H, Moosavi-Movahedi AA (2007) Electrochim Acta 52:4622 doi:10.1016/j.electacta.2007.01.022

    Article  CAS  Google Scholar 

  49. Hajjizadeh M, Jabbari A, Heli H, Moosavi-Movahedi AA, Shafiee A, Karimian K (2008) Anal Biochem 373:337 doi:10.1016/j.ab.2007.10.030

    Article  CAS  Google Scholar 

  50. Yi Q, Zhang J, Huang W, Liu X (2007) Catal Commun 8:1017 doi:10.1016/j.catcom.2006.10.009

    Article  CAS  Google Scholar 

  51. Hu CC, Cheng CY (2002) J Power Sources 111:137 doi:10.1016/S0378-7753(02)00296-3

    Article  CAS  Google Scholar 

  52. Hahn F, Eden BB, Croissant MJ, Lamy C (1986) Electrochim Acta 31:335 doi:10.1016/0013-4686(86)80087-1

    Article  CAS  Google Scholar 

  53. Subbaiah T, Mallick SC, Mishra KG, Sanjay K, Das RP (2002) J Power Sources 112:562 doi:10.1016/S0378-7753(02)00470-6

    Article  CAS  Google Scholar 

  54. Yevidal AD, Figlarz M (1987) J Appl Electrochem 17:589 doi:10.1007/BF01084134

    Article  Google Scholar 

  55. Jafarian M, Mahjani MG, Heli H, Gobal F, Heydarpoor M (2003) Electrochem Commun 5:184 doi:10.1016/S1388-2481(03)00017-1

    Article  CAS  Google Scholar 

  56. Liu B, Zhang Y, Yuan H, Yang H, Yang E (2000) Int J Hydrogen Energy 25:333 doi:10.1016/S0360-3199(99)00026-9

    Article  CAS  Google Scholar 

  57. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ojani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojani, R., Raoof, JB. & Fathi, S. Nickel–poly(o-aminophenol)-modified carbon paste electrode; an electrocatalyst for methanol oxidation. J Solid State Electrochem 13, 927–934 (2009). https://doi.org/10.1007/s10008-008-0626-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0626-z

Keywords

Navigation