Skip to main content
Log in

Natural monocrystalline chalcopyrite and galena as electrochemical sensors in non-aqueous solvents. Part II: potentiometric titrations of weak acids in N,N-dimethyformamide and N-methylpyrrolidone

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Natural monocrystalline chalcopyrite and galena as new indicator electrodes for the potentiometric titration of weak acids in N,N-dimethylformamide and N-methylpyrrolidone were used. The investigated electrodes showed a linear dynamic response for p-toluenesulfonic acid concentrations in the range from 0.1 to 0.001 M, with a Nernstian slope of 59.0 mV for chalcopyrite and 33 mV per decade for galena in N,N-dimethylformamide, 56.1 mV for chalcopyrite, and 32.0 mV per decade for galena in N-methylpyrrolidone. The potential in the course of the titration and at the titration end point was rapidly established. Sodium methylate, potassium hydroxide, and tetrabutylammonium hydroxide proved to be very suitable titrating agents for these titrations. The response time was less than 10–11 s, and the lifetime of the electrodes is limitless. The advantages of the electrodes are log-term stability, fast response, reproducibility, easy preparation, and low cost. The results obtained in the determination of the investigated weak acids deviated on average by ±0.04–0.34% from those obtained with a glass electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vyas RHQ, Kharat RB (1988) Indian J Pharm Sci 50(5):279

    CAS  Google Scholar 

  2. Fritz JS, Keen RT (1952) Anal Chem 24:308 doi:10.1021/ac60062a013

    Article  CAS  Google Scholar 

  3. Rhodes HJ, DeNardo JJ, Bode DW, Blake MI (1975) J Pharm Sci 64:1386 doi:10.1002/jps.2600640828

    Article  CAS  Google Scholar 

  4. Galpern GM, Kreshkov AP, Teplova VV, Sulpovar, Seryanova SE, Yanduganova NP (1977) Zh Anal Khim 32:586

    CAS  Google Scholar 

  5. Izutsu K (2002) Electrochemistry in nonaqueous solution. Wiley-VCS, Germany

    Book  Google Scholar 

  6. Fauth MI, Frandsen M, Havlik BR (1964) Anal Chem 36:380 doi:10.1021/ac60208a041

    Article  CAS  Google Scholar 

  7. Fritz JS, Keen RT (1953) Anal Chem 25:179 doi:10.1021/ac60073a040

    Article  CAS  Google Scholar 

  8. Das A, Boparai KS (1982) Talanta 29:57 doi:10.1016/0039-9140(82)80138-0

    Article  CAS  Google Scholar 

  9. Fritz JS (1952) Anal Chem 24:306 doi:10.1021/ac60062a012

    Article  CAS  Google Scholar 

  10. Saad SM, Zaki TM (1975) Talanta 22:843 doi:10.1016/0039-9140(75)80180-9

    Article  Google Scholar 

  11. Aslan A, Erdogan Y, Demirtas A, Karslioglu S (1997) Farmazie 52:309

    CAS  Google Scholar 

  12. Maurmeyer RK, Margosis M, Ma TS (1958) Mikrochim Acta 47:177 doi:10.1007/BF01218684

    Google Scholar 

  13. Deal VZ, Wyld GEA (1955) Anal Chem 27:47 doi:10.1021/ac60097a014

    Article  CAS  Google Scholar 

  14. Ephraim JH (1989) Talanta 36:379 doi:10.1016/0039-9140(89)80204-8

    Article  CAS  Google Scholar 

  15. Esteves da Silva JCG, Machado ASC (1994) Talanta 41:2095 doi:10.1016/0039-9140(94)00185-5

    Article  CAS  Google Scholar 

  16. Butler JP, Czepiel TP (1956) Anal Chem 28:1468 doi:10.1021/ac60117a035

    Article  CAS  Google Scholar 

  17. Kolthoff IM, Chantooni MK Jr, Smagowski H (1970) Anal Chem 42:1622 doi:10.1021/ac60295a013

    Article  CAS  Google Scholar 

  18. Bartnicka H, Bojanowska I, Kalinowski MK (1991) Aust J Chem 44:1077

    CAS  Google Scholar 

  19. Mansfeld M, Pařik P, Ludwig M (2004) Collect Czechoslov Chem Commun 69:1479 doi:10.1135/cccc20041479

    Article  CAS  Google Scholar 

  20. Alkan M, Yüksek H, Islamoğlu F, Bahçeci Ş, Calapoğlu M, Elmastaş M et al (2007) Molecules 12:1805

    Article  CAS  Google Scholar 

  21. Bartnicka H, Bojanowska I, Kalinowski MK (1993) Aust J Chem 46:31

    Google Scholar 

  22. Barbosa J, Bosch CM, Sanz-Nebot V (1992) Mikrochim Acta 106:327 doi:10.1007/BF01242105

    CAS  Google Scholar 

  23. Barbosa J, Bosch CM (1991) Talanta 38:1297 doi:10.1016/0039-9140(91)80109-D

    Article  CAS  Google Scholar 

  24. Roletto E, Vanni A (1977) Talanta 24:73 doi:10.1016/0039-9140(77)80195-1

    Article  CAS  Google Scholar 

  25. Braun RD, LoVerso MR (1979) Talanta 26:185 doi:10.1016/0039-9140(79)80046-6

    Article  CAS  Google Scholar 

  26. Galpern GM, Gurvich Ya A, Kryuchkova NF (1970) Zh Anal Khim 25:1819

    CAS  Google Scholar 

  27. Korenman YI, Ermolaeva TN, Podolina EA (1998) J Radioanal Nucl Chem 228:113 doi:10.1007/BF02387310

    Article  CAS  Google Scholar 

  28. Korenman Ya I, Yermolaeva TN (1995) Analyst (Lond) 120:2387 doi:10.1039/an9952002387

    Article  Google Scholar 

  29. Karlberg B, Johansson G (1969) Talanta 16:1545 doi:10.1016/0039-9140(69)80215-8

    Article  CAS  Google Scholar 

  30. Bates RG (1973) Determination of pH, theory and practice. Wiley, New York, p 372

    Google Scholar 

  31. Mihajlović Lj V, Mihajlović RP, Antonijević MM, Vukanović BV (2004) Talanta 64:879 doi:10.1016/j.talanta.2004.03.061

    Article  CAS  Google Scholar 

  32. Mihajlović R, Stanić Z (2005) J Solid State Electrochem 9:558 doi:10.1007/s10008-004-0591-0

    Article  CAS  Google Scholar 

  33. Antonijević MM, Mihajlović RP, Vukanović BV, Jovanović S (1997) Analusis 25:152

    Google Scholar 

  34. Habashi F (1978) Chalcopyrite: its chemistry and metallurgy. McGraw-Hill, New York, p 165

    Google Scholar 

  35. Koch DFA (1975) In: Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry. Plenum, New York, p 211

    Google Scholar 

  36. Folmer JCW, Jellinek F (1980) J Less-Common Met 76:153 doi:10.1016/0022-5088(80)90019-3

    Article  CAS  Google Scholar 

  37. Nakai I, Sugitani Y, Nagashima K, Niwa Y (1978) J Inorg Nucl Chem 40:789 doi:10.1016/0022-1902(78)80152-3

    Article  CAS  Google Scholar 

  38. Vaughan DJ, Graig JR (1978) Mineral chemistry of metal sulfides. Cambridge Earth Science Series. Cambridge University Press, New York, p 493

    Google Scholar 

  39. Pikna L, Lux L, Grygar T (2006) Chem Papers 60:293 doi:10.2478/s11696-006-0051-7

    Article  CAS  Google Scholar 

  40. Hackl RP, Dreisinger DB, Peters E, King JP (1995) Hydrometallurgy 39:25 doi:10.1016/0304-386X(95)00023-A

    Article  CAS  Google Scholar 

  41. Buckley AN, Woods R (1994) J Electroanal Chem 370:295 doi:10.1016/0022-0728(94)03211-4

    Article  CAS  Google Scholar 

  42. Schuhmann D (1993) N J Chem 17:551

    CAS  Google Scholar 

  43. Ndzebet E, Schuhmann D, Vanel P (1994) Electrochim Acta 39:745 doi:10.1016/0013-4686(94)80019-7

    Article  Google Scholar 

  44. Peuporte T, Schuhmann D (1995) J Electroanal Chem 385:9 doi:10.1016/0022-0728(94)03756-S

    Article  Google Scholar 

  45. Nowak P, Laajalehto K, Kartio I (2000) Colloids Surf 161:447 doi:10.1016/S0927-7757(99)00214-9

    Article  CAS  Google Scholar 

  46. Kim BS, Hayers RA, Prestige CA, Ralson J, St Smart R (1995) Langmuir 11:2554 doi:10.1021/la00007a039

    Article  CAS  Google Scholar 

  47. Wittstock G, Kartio I, Hirsch D, Kunze S, Szargan R (1996) Langmuir 12:5709 doi:10.1021/la960385s

    Article  CAS  Google Scholar 

  48. Lam-Thi PO, Lamache M, Bauer D (1984) Electrochim Acta 29:217 doi:10.1016/0013-4686(84)87050-4

    Article  CAS  Google Scholar 

  49. Paul RL, Nicol ML, Diggle JW, Saunders AP (1979) Electrochim Acta 23:625 doi:10.1016/0013-4686(78)80091-7

    Article  Google Scholar 

  50. Kuruoğlu D, Canel E, Memon S, Yilmaz M (2003) Anal Sci 19:217 doi:10.2116/analsci.19.217

    Article  Google Scholar 

  51. Oyama N, Hirokawa T, Yamaguchi S, Ushizawa N, Shimomura T (1987) Anal Chem 59:258 doi:10.1021/ac00129a009

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Ministry of Science of the Republic of Serbia (project no. 142060 B)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Mihajlović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihajlović, L.V., Nikolić-Mandić, S.D., Vukanović, B.V. et al. Natural monocrystalline chalcopyrite and galena as electrochemical sensors in non-aqueous solvents. Part II: potentiometric titrations of weak acids in N,N-dimethyformamide and N-methylpyrrolidone. J Solid State Electrochem 13, 895–904 (2009). https://doi.org/10.1007/s10008-008-0625-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0625-0

Keywords

Navigation