Skip to main content
Log in

Chemical diffusion of electroactive species in ionic compounds: a focus on chemical equilibrium constraint

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work aims at considering the theoretical basis of chemical diffusion of electroactive species in ionic compounds, in particular from the perspective of the chemical equilibrium constraint. For this purpose, first a variety of descriptions on diffusivity are briefly summarised from the viewpoint of driving forces. Then, the equations to stand for the chemical diffusion behaviour are theoretically derived with and without the chemical equilibrium constraint. Finally, the two different situations above are critically compared to explore the origin of chemical diffusion in ionic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weppner W (1995) Electrode performance. In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, New Work, pp 199–228

    Google Scholar 

  2. Pyun SI (1999) J Corros Sci Korea 28:1

    CAS  Google Scholar 

  3. Wagner C (1930) Z Phys Chem B 11:139

    CAS  Google Scholar 

  4. Wagner C (1936) Z Phys Chem B 32:447

    Google Scholar 

  5. Mott NF, Gurney RW (1940) Electronic processes in ionic crystals. Clarendon, Oxford, p 256

    Google Scholar 

  6. Bardeen J, Brattain WH, Shockley W (1946) J Chem Phys 14:714 doi:10.1063/1.1724091

    Article  CAS  Google Scholar 

  7. Harned S (1947) Chem Rev 40:461 doi:10.1021/cr60127a004

    Article  CAS  Google Scholar 

  8. Jaffe G (1952) Phys Rev 85:354 doi:10.1103/PhysRev.85.354

    Article  CAS  Google Scholar 

  9. Eigen M, De Mayer L (1956) Z Elektrochem 60:1037

    CAS  Google Scholar 

  10. Reiss H, Fuller CS, Morin FJ (1956) Bell Syst Tech J 35:535

    Google Scholar 

  11. Oel HJ (1957) Z Phys Chem 10:165

    CAS  Google Scholar 

  12. Tomas DG (1957) J Phys Chem Solids 3:229 doi:10.1016/0022-3697(57)90027-6

    Article  Google Scholar 

  13. Kurtz AD, Gravel CL (1958) J Appl Phys 29:1456 doi:10.1063/1.1722968

    Article  CAS  Google Scholar 

  14. Rice SA (1958) Phys Rev 112:804 doi:10.1103/PhysRev.112.804

    Article  CAS  Google Scholar 

  15. Kurtz AD, Yu R (1960) J Appl Phys 31:303 doi:10.1063/1.1735562

    Article  CAS  Google Scholar 

  16. Mizuno H, Miyamoto S (1961) Physica 27:800 doi:10.1016/0031-8914(61)90100-8

    Article  CAS  Google Scholar 

  17. Shewmon PG (1963) Diffusion in solid. McGraw-Hill, New York, pp 1–39

    Google Scholar 

  18. Kroeger FA (1964) The chemistry of imperfect crystals. North-Holland, Amsterdam, pp 794–813

    Google Scholar 

  19. Prigogine I (1967) Thermodynamics of irreversible processes. Interscience, New York, pp 55–74

    Google Scholar 

  20. De Groot SR, Mazur P (1969) Non-equilibrium thermodynamics. North-Holland, Amsterdam, pp 239–246

    Google Scholar 

  21. Sockel HG, Schmalzried H, Wynnyckyj JR (1969) Z Phys Chem 68:49

    CAS  Google Scholar 

  22. Wagner C (1969) Acta Metall 17:99 doi:10.1016/0001-6160(69)90131-X

    Article  CAS  Google Scholar 

  23. Wagner C (1972) Prog Solid State Chem 7:1 doi:10.1016/0079-6786(72)90003-9

    Article  CAS  Google Scholar 

  24. Schmalzried H (1981) Solid state reaction. Verlag Chemie, Weinheim, pp 59–91

    Google Scholar 

  25. Brett CMA, Brett AMO (1993) Electrochemistry principles, methods, and applications. Oxford University Press, New York, pp 25–31

    Google Scholar 

  26. Bockris JOM, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry, second edn. Kluwer Academic, New York, p 448

    Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd ed. John Wiley and Sons, New York, pp 28–43

    Google Scholar 

  28. Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, New York, pp 185–262

    Google Scholar 

  29. Herring C (1950) J Appl Phys 21:437 doi:10.1063/1.1699681

    Article  Google Scholar 

  30. Ruoff AL (1965) J Appl Phys 36:2903 doi:10.1063/1.1714604

    Article  CAS  Google Scholar 

  31. Fischmeister H, Grimvall G (1973) Ostwald ripening—a survey. In: Kuzynski GC (ed) Sintering and related phenomena. Plenum, New Work, pp 119–150

    Google Scholar 

  32. Rahaman MN (1995) Ceramic processing and sintering. Marcel Dekker, New York,, pp 367–373

    Google Scholar 

  33. Kopidakis N, Schiff EA, Park NG, van de Lagemaat J, Frank AJ (2000) J Phys Chem B 104:3930 doi:10.1021/jp9936603

    Article  CAS  Google Scholar 

  34. Nakade S, Kambe S, Kitamura T, Wada Y, Yanagida S (2001) J Phys Chem B 105:9150 doi:10.1021/jp011375p

    Article  CAS  Google Scholar 

  35. Kang SJL (2005) Sintering: densification, grain growth and microstructure. Elsevier, Amsterdam, pp 181–196

    Google Scholar 

  36. Schmalzried H (1995) Chemical kinetics of solids. VCH, Weinheim, pp 95–136

    Book  Google Scholar 

  37. Readey DW (1966) J Appl Phys 37:2309 doi:10.1063/1.1708809

    Article  CAS  Google Scholar 

  38. Gordon RS (1973) J Am Ceram Soc 56:147 doi:10.1111/j.1151-2916.1973.tb15431.x

    Article  CAS  Google Scholar 

  39. Maier J (1993) J Am Ceram Soc 76:1223 doi:10.1111/j.1151-2916.1993.tb03745.x

    Article  CAS  Google Scholar 

  40. Maier J (1993) J Am Ceram Soc 76:1228 doi:10.1111/j.1151-2916.1993.tb03746.x

    Article  CAS  Google Scholar 

  41. Kreuer KD (1999) Solid State Ionics 125:285 doi:10.1016/S0167-2738(99)00188-5

    Article  CAS  Google Scholar 

  42. Kang SJL, Yoo HI (2004) J Am Ceram Soc 87:2286 doi:10.1111/j.1151-2916.2004.tb07506.x

    Article  CAS  Google Scholar 

  43. Goors WG (2007) Solid State Ionics 178:481 doi:10.1016/j.ssi.2006.11.004

    Article  Google Scholar 

  44. Bae JS, Pyun SI (1996) Solid State Ionics 90:251 doi:10.1016/S0167-2738(96)00378-5

    Article  CAS  Google Scholar 

  45. Lee JW, Pyun SI (2003) J Power Sources 119–121:760 doi:10.1016/S0378-7753(03)00217-9

    Article  Google Scholar 

  46. Pyun SI, Choi YM, Jeng ID (1997) J Power Sources 68:593 doi:10.1016/S0378-7753(96)02635-3

    Article  CAS  Google Scholar 

  47. Kim SW, Pyun SI (2002) J Electroanal Chem 528:114 doi:10.1016/S0022-0728(02)00900-2

    Article  CAS  Google Scholar 

  48. Choi YM, Pyun SI (1997) Solid State Ionics 99:173 doi:10.1016/S0167-2738(97)00253-1

    Article  CAS  Google Scholar 

  49. Choi YM, Pyun SI, Bae JS, Moon SM (1995) J Power Sources 56:25 doi:10.1016/0378-7753(95)80004-Z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by a grant-in-aid for the National Core Research Center Program from MOST and KOSEF (No. R15-2006-022-01001-0). Furthermore, this work was partly supported by the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Il Pyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Pyun, SI. & Shin, HC. Chemical diffusion of electroactive species in ionic compounds: a focus on chemical equilibrium constraint. J Solid State Electrochem 13, 829–836 (2009). https://doi.org/10.1007/s10008-008-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0617-0

Keywords

Navigation