Skip to main content
Log in

Glucose-sensitive field effect transistor using totally synthetic compounds

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A field effect transistor (FET)-based glucose sensor was fabricated. As a totally synthetic and thus stable glucose-sensing moiety, 3-acrylamidophenylboronic acid was chemically introduced onto the FET gate surface in the form of a thin copolymer gel layer. Excellent transistor characteristics were confirmed even after the surface modification, ensuring validity of the modification procedure herein developed. Glucose-induced changes in the FET’s electric characteristics were obtained in quantitative as well as reversible manners. It was also demonstrated that the prepared FET is able to continuously perceive the change in the glucose concentration in the milieu. The detected signals were attributed to the faction change of the gate-introduced phenyborate anions, also presumably involving other parameter changes such as permittivity and conductivity. The use of the fabricated FET could further be extended to the construction of stable, readily minutualizable, and label-free carbohydrate molecule-sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feng CL, Xu YH, Song LM (2000) Sens Actuators B 66:190

    Article  Google Scholar 

  2. Schafoort RBM, Kooyman RPH, Bergveld P, Greve J (1990) Biosens Bioelectron 5:103

    Article  Google Scholar 

  3. Kamahori M, Ishige Y, Shimada M (2007) Biosens Bioelectron 22:3080

    Article  CAS  Google Scholar 

  4. Fritz J, Cooper EB, Gaudet S, Sorger PK, Manails SR (2002) Proc Natl Acad Sci USA 99:14142

    Article  CAS  Google Scholar 

  5. Pouthas F, Gentil C, Cote D, Bockelmann U (2004) Appl Phys Lett 84:1594

    Article  CAS  Google Scholar 

  6. Sakata T, Miyahara Y (2007) Biosens Bioelectron 22:1311

    Article  CAS  Google Scholar 

  7. Sakata T, Miyahara Y (2006) Angew Chem Int Ed 45:2225

    Article  CAS  Google Scholar 

  8. Wilson GS, Hu Y (2000) Chem Rev 100:2693

    Article  CAS  Google Scholar 

  9. Weith H, Wiebers J, Gilham P (1970) Biochem 9:4396

    Article  CAS  Google Scholar 

  10. Hageman JH, Kuehn GD (1997) Anal Biochem 80:547

    Article  Google Scholar 

  11. Gelijkens C, Deleenheer A (1980) J Chrom 183:78

    Article  CAS  Google Scholar 

  12. James TD, Sandanayake KRAS, Shinkai S (1995) Nature 374:345

    Article  CAS  Google Scholar 

  13. James TD, Sandanayake KRAS, Iguchi R, Shinkai S (1995) J Am Chem Soc 117:8982

    Article  CAS  Google Scholar 

  14. Nakayama D, Takeoka Y, Watanabe M, Kataoka K (2003) Angew Chem Int Ed 42:4197

    Article  CAS  Google Scholar 

  15. Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CA, Finegold DN (2003) J Am Chem Soc 125:3322

    Article  CAS  Google Scholar 

  16. Kitano S, Kataoka K, Koyama K, Okano T, Sakurai Y (1991) Makromol Chem Rapid Commun 12:227

    Article  CAS  Google Scholar 

  17. Kitano S, Koyama K, Kataoka K, Okano T, Sakurai Y (1992) J Control Release 19:161

    Article  CAS  Google Scholar 

  18. Kataoka K, Miyazki H, Bunya M, Okano T, Sakurai Y (1998) J Am Chem Soc 120:12694

    Article  CAS  Google Scholar 

  19. Matsumoto A, Kurata T, Shiino D, Murata Y, Kataoka K (2004) Macromolecules 37:1502

    Article  CAS  Google Scholar 

  20. Matsumoto A, Yoshida R, Kataoka K (2004) Biomacromolecules 5:1038

    Article  CAS  Google Scholar 

  21. Miyazaki H, Kikuchi A, Koyama Y, Okano T, Sakurai Y, Kataoka K (1993) Biochem Biophys Res Commun 195:829

    Article  CAS  Google Scholar 

  22. Uchimura E, Otsuka H, Okano T, Sakurai Y, Kataoka K (2000) Biotechnol Bioeng 72:307

    Article  Google Scholar 

  23. Shoji E, Freund M (2002) J Am Chem Soc 124:12486

    Article  CAS  Google Scholar 

  24. Zayats M, Katz E, Willner I (2002) J Am Chem Soc 124:2120

    Article  CAS  Google Scholar 

  25. Kikuchi A, Suzuki K, Okabayashi O, Hoshino H, Kataoka K, Sakurai Y, Okano T (1996) Anal Chem 68:823

    Article  CAS  Google Scholar 

  26. Gabai R, Sallacan N, Chegel V, Bourenko T, Katz E, Willner I (2001) J Phys Chem B 105:8196

    Article  CAS  Google Scholar 

  27. Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K (2003) J Am Chem Soc 125:3493 (references are therein)

    Article  CAS  Google Scholar 

  28. Tanaka T (1978) Phys Rev Lett 40:820

    Article  CAS  Google Scholar 

  29. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87:1392

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. C. Kataoka (National Institute for Materials Science), Drs. M. Washizu, K. Ishihara, and R. Yoshida (The University of Tokyo) for their help and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Miyahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, A., Sato, N., Sakata, T. et al. Glucose-sensitive field effect transistor using totally synthetic compounds. J Solid State Electrochem 13, 165–170 (2009). https://doi.org/10.1007/s10008-008-0610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0610-7

Keywords

Navigation