Skip to main content
Log in

The new theory of electron transfer: application to the photosynthetic reaction centre

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Based on recent developments in the theory of electron transfer, we prove that a non-polar environment is needed to maintain the high efficiency and chemical integrity of the photosynthetic reaction centre. We also determine the Gibbs energy diagram for the primary act of charge separation in photosynthesis, and propose an equivalent circuit that captures the principal features of the entire acceptor side of the electron transport chain in photosystem II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fletcher S (2007) J Solid State Electrochem 11:965

    Article  CAS  Google Scholar 

  2. Fletcher S (2008) J Solid State Electrochem 12:765

    Article  CAS  Google Scholar 

  3. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  4. Marcus RA (1956) J Chem Phys 24:979

    Article  CAS  Google Scholar 

  5. Marcus RA (1963) J Chem Phys 38:1858

    Article  CAS  Google Scholar 

  6. Marcus RA (1964) Ann Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  7. Marcus RA (1965) J Phys Chem 43:679

    Article  CAS  Google Scholar 

  8. Marcus RA (1994) J Phys Chem 98:7170

    Article  CAS  Google Scholar 

  9. Marcus RA (1997) Electron transfer reactions in chemistry: theory and experiment. In: Malmström BG (ed) Nobel lectures, chemistry 1991–1995. World Scientific Publishing, Singapore

    Google Scholar 

  10. Hush NS (1961) Proceedings of the Fourth Moscow conference of electrochemistry (1956). Consultants Bureau, New York (English translation 1961)

    Google Scholar 

  11. Hush NS (1958) J Chem Phys 28:962

    Article  CAS  Google Scholar 

  12. Hush NS (1961) Trans Faraday Soc 57:557

    Article  CAS  Google Scholar 

  13. Hush NS (1999) J Electroanal Chem 470:170

    Article  CAS  Google Scholar 

  14. Dirac PAM (1930) The principles of quantum mechanics. Clarendon, Oxford

    Google Scholar 

  15. Marcus RA, Sutin N (1985) In: Michel-Beyerle ME (ed) Antennas and reaction centers of photosynthetic bacteria. Springer, Berlin, West Germany, pp 226–233

    Google Scholar 

  16. Khorobrykh S, Mubarakshina M, Ivanov B (2004) Biochim Biophys Acta 1657:164

    Article  CAS  Google Scholar 

  17. Afanas’ev IB (1991) Superoxide ion: chemistry and biological implications. CRC, Boca Raton, FL

    Google Scholar 

  18. Mitchell P (1961) Nature 191:144

    Article  CAS  Google Scholar 

  19. Deisenhofer J, Norris JR (eds) (1993) The photosynthetic reaction centre, vols. I and II. Academic, San Diego, CA

  20. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, The Netherlands

  21. Wakeham MC, Jones MR (2005) Biochem Soc Trans 33:851

    Article  CAS  Google Scholar 

  22. Woodbury NW, Allen JP (1995) In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, The Netherlands, pp 527–557

    Google Scholar 

  23. Parson WW (1996) In: Bendall DS (ed) Protein electron transfer. BIOS Scientific Publishers Ltd, Oxford, pp 125–160

    Google Scholar 

  24. Hoff AJ, Deisenhofer J (1997) Phys Rep 287:1

    Article  CAS  Google Scholar 

  25. Okamura MY, Paddock ML, Graige WS, Feher G. (2000) Biochim Biophys Acta 1458:148

    Article  CAS  Google Scholar 

  26. Wraight CA (2004) Front Biosci 9:309

    Article  CAS  Google Scholar 

  27. Vermeglio A, Clayton RK (1977) Biochim Biophys Acta 461:159

    Article  CAS  Google Scholar 

  28. Bouges-Bocquet B (1973) Biochim Biophys Acta 314:250

    Article  CAS  Google Scholar 

  29. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Nature 409:739

    Article  CAS  Google Scholar 

  30. Kamiya N, Shen J-R (2003) Proc Natl Acad Sci U S A 100:98

    Article  CAS  Google Scholar 

  31. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831

    Article  CAS  Google Scholar 

  32. Debus R (1992) Biochim Biophys Acta 1102:269

    Article  CAS  Google Scholar 

  33. Klimov VV (2003) Photosynth Res 76:247

    Article  CAS  Google Scholar 

  34. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Nature 318:618

    Article  Google Scholar 

  35. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1988) Proc Natl Acad Sci U S A 85:8487

    Article  CAS  Google Scholar 

  36. Orr L, Govindjee (2007) Photosynth Res 91:107

    Article  CAS  Google Scholar 

  37. Ishikita H, Biesiadka J, Loll B, Saenger W, Knapp E-W (2006) Angew Chem Int Ed 45:1964

    Article  CAS  Google Scholar 

  38. Ishikita H, Saenger W, Biesiadka J, Loll B, Knapp E-W (2006) Proc Natl Acad Sci U S A 103:9855

    Article  CAS  Google Scholar 

  39. Johnson GN, Rutherford AW, Krieger A (1995) Biochim Biophys Acta (Bioenergetics) 1229:202

    Article  Google Scholar 

  40. Klimov VV, Krasnovskii AA (1981) Photosynthetica 15:592

    CAS  Google Scholar 

  41. Diner BA, Rappaport F (2002) Ann Rev Plant Biol 53:551

    Article  CAS  Google Scholar 

  42. Tanaka S, Marcus RA (1997) J Phys Chem B 101:5031

    Article  CAS  Google Scholar 

  43. Marcus RA, Sutin N (1985) Biochim Biophys Acta (Reviews on Bioenergetics) 811:265

    CAS  Google Scholar 

  44. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040

    Article  CAS  Google Scholar 

  45. Monera OD, Sereda TJ, Zhou NE, Kay CM, Hodges RS (1995) J Pept Sci 1:319

    Article  CAS  Google Scholar 

  46. Martin J-L, Breton J, Hoff AJ, Migus A, Antonetti A (1986) Proc Natl Acad Sci U S A 83:957

    Article  CAS  Google Scholar 

  47. Breton J, Martin J-L, Fleming GR, Lambry J-C (1988) Biochemistry 27:8276

    Article  CAS  Google Scholar 

  48. Aartsma TJ, Amesz J (1996) Photosynth Res 48:99

    Article  CAS  Google Scholar 

  49. Kurreck J, Schödel R, Renger G (2000) Photosynth Res 63:171

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I should like to thank Christian Amatore (École Normale Supérieure, Paris) for drawing the problem of charge transfer in PSII to my attention, and Frank Müh (Freie Universität, Berlin) and Athina Zouni (Technische Universität, Berlin) for their generous help in interpreting the X-ray crystal structures of PSII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Fletcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, S. The new theory of electron transfer: application to the photosynthetic reaction centre. J Solid State Electrochem 12, 1511–1520 (2008). https://doi.org/10.1007/s10008-008-0609-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0609-0

Keywords

Navigation