Skip to main content
Log in

Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrophoretic deposition combined with common pressure hydrothermal treatment was employed to prepare nanocrystalline TiO2 thin film from suspension of tetra-n-butyl titanate and P25 at low temperature. The tetra-n-butyl titanate was hydrolyzed and crystallized into anatase to interconnect nanocrystalline TiO2 particles and to stick them to a conductive substrate by common pressure hydrothermal treatment to improve the electron transport properties of the deposited thin film. A dye-sensitized solar cell based on TiO2 thin film prepared by the low temperature method yielded the conversion efficiency of 6.12%. Due to the relative slower electron transport rate in the deposited film, its conversion efficiency was slightly lower than that of the cell with TiO2 thin film prepared by the conventional high temperature sintering method. Since it is free of high temperature sintering step, this method can be used to prepare nanocrystalline TiO2 thin film on plastic polymer conductive substrate for fabrication of flexible dye-sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Regan BO, Gratzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Boschloo G, Lindstrom J, Magnusson E, Holmberg A, Hagfeldt A (2002) J Photochem Photobiol A 148:11

    Article  CAS  Google Scholar 

  3. Lindstrom H, Holmberg A, Magnusson E, Lindquist SE, Malmqvist L, Hagfeldt A (2001) Nano Lett 1:97

    Article  Google Scholar 

  4. Lindstrom H, Magnusson E, Holmberg A, Sodergren S, Lindquist SE, Hagfeldt A (2002) Sol Energy Mater Sol Cells 73:91

    Article  Google Scholar 

  5. De Paoli MA, Nogueira AF, Machado DA, Longo C (2001) Electrochim Acta 46:4243

    Article  Google Scholar 

  6. Miyasaka T, Kijitori Y, Murakami TN, Kimura M, Uegusa S (2002) Chem Lett 12:1250

    Article  Google Scholar 

  7. Miyasaka T, Kijitori Y (2004) J Electrochem Soc 151A:1767

    Article  Google Scholar 

  8. Kim GS, Seo HK, Godble VP, Kim YS, Yang OB, Shin HS (2006) Electrochem Commun 8:961

    Article  CAS  Google Scholar 

  9. Yoshida T, Oekermann T, Okabe K, Schlettwein D, Funabiki K, Minoura H (2002) Electrochemistry 70:470

    CAS  Google Scholar 

  10. Matsumoto Y, Noguchi M, Matsunaga T, Kamada K, Koinuma M, Yamada S (2001) Electrochemistry 69:314

    CAS  Google Scholar 

  11. Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Solid State Ionics 151:19

    Article  CAS  Google Scholar 

  12. Zhang DS, Yoshida T, Minoura H (2002) Chem Lett 9:874

    Article  Google Scholar 

  13. Zhang DS, Yoshida T, Furuta K, Minoura H (2004) J Photochem Photobiol A 164:159

    Article  CAS  Google Scholar 

  14. Longo C, Nogueira AF, De Paoli MA, Cachet H (2002) J Phys Chem B 106:5925

    Article  CAS  Google Scholar 

  15. Park NG, Schlichthorl G, van de Lagemaat J, Cheong HM, Mascarenhas A, Frank AJ (1999) J Phys Chem B 103:3308

    Article  CAS  Google Scholar 

  16. Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S (2002) J Phys Chem B 106:10004

    Article  CAS  Google Scholar 

  17. Murakami TN, Kijitori Y, Kawashima N, Miyasaka T (2004) J Photochem Photobiol A 164:187

    Article  CAS  Google Scholar 

  18. Murakami TN, Kijitori Y, Kawashima N, Miyasaka T (2003) Chem Lett 32:1076

    Article  CAS  Google Scholar 

  19. Lee S, Jun Y, Kim KJ, Kim D (2001) Sol Energy Mater Sol Cells 65:193

    Article  CAS  Google Scholar 

  20. Menzies DB, Dai Q, Bourgeois L, Caruso RA, Cheng YB, Simon GP, Spiccia L (2007) Nanotechnology 18:25608

    Article  Google Scholar 

  21. Xagas AP, Bernard MC, Hugot-Le Goff A, Spyrellis N, Loizos Z, Falaras P (2000) J Photochem Photobiol A 132:115

    Article  CAS  Google Scholar 

  22. Li CY, Lin Y, Li XP, Wang ZP, Ma YT, Zhou XW, Feng SJ, Xiao XR (2005) Chin Sci Bull 501:1449

    Article  Google Scholar 

  23. Zhang DS, Yoshida T, Oekermann T, Furuta K, Minoura H (2006) Adv Funct Mater 16:1228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Major State Basic Research Development Program (2006CB202605), High-Tech Research and Development of China Program (2007AA05Z439), the National Nature Science Foundation of China (50221201), and the Innovative Foundation of the Center for Molecular Science, Chinese Academy of Science (CMS-CX200718).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingbo Zhang or Yuan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W., Chen, J., Zhou, X. et al. Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell. J Solid State Electrochem 13, 651–656 (2009). https://doi.org/10.1007/s10008-008-0605-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0605-4

Keywords

Navigation