Skip to main content
Log in

Electrochromic responses of low-temperature-annealed tungsten oxide thin films in contact with a liquid and a polymeric gel electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Thin films of tungsten trioxide (WO3) for electrochromic application were synthesized by potentiostatic method by using a peroxytungstic acid as a solution precursor. The morphology of the films with and without postthermal annealing was analyzed by atomic force microscopy. When they were in contact with the liquid electrolyte (LiI in propylene carbonate, PC) and under alternatively applied negative (−1.5 V) and positive (+1.0 V) potentials, the transient optical transmittance modulations at wavelength of 650 nm of the as-deposited and 60 °C annealed WO3 samples were higher than that of 100 °C annealed WO3 films, and the switching times between the colored and bleached states were related to the surface morphology of the WO3 films. In polymeric gel electrolyte (LiI and polymethyl methacrylate in PC) devices, longer time was required for complete coloration as well as bleaching process compared with the liquid one. A parametric analysis was made for each of the transient optical transmittance curves of WO3-based electrochromic devices to extract the values of the response time in coloration (reduction) and bleaching (oxidation) processes. It concludes that the coloration process was determined by the exchange of current density at the electrolyte–WO3 interface and a possible inhomogeneous interfacial potential for ion intercalation retards the effective coloration time. The bleaching process seems to be controlled by the space charge-limited lithium ion diffusion in WO3 electrode and the ionic conductivity of the electrolyte as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Granqvist CG (2000) Solar Energy Materials & Solar Cells 60:201

    Article  CAS  Google Scholar 

  2. Bange K (1999) Solar Energy Materials & Solar Cells 58:01

    Article  CAS  Google Scholar 

  3. Sharma N, Deepa M, Varshney P, Agnihotry SA (2000) J Sol-Gel Sci Technol 18:167

    Article  CAS  Google Scholar 

  4. Avellaneda CO, Bulhões LOS (2003) Solid State Ionics 165:59

    Article  CAS  Google Scholar 

  5. Biswas PK, Pramanik NC, Mahapatra MK, Ganguli D, Livage J (2003) Materials Letters 57:4429

    Article  CAS  Google Scholar 

  6. Bueno PR, Faria RC, Avellaneda CO, Leite ER, Bulhões LOS (2003) Solid State Ionics 158:415

    Article  CAS  Google Scholar 

  7. Kudo T (1984) Nature 312:537

    Article  CAS  Google Scholar 

  8. Gavanier B, Butt NS, Hutchins M, Mercier V, Topping AJ, Owen JR (1999) Electrochim Acta 44:3251

    Article  CAS  Google Scholar 

  9. Di Marco G, Lanza M, Pennisi A, Simona F (2000) Solid State Ionics 127:23

    Article  Google Scholar 

  10. Mattsson MS (2000) Solid State Ionics 131:261

    Article  Google Scholar 

  11. Passerini S, Scrosati B, Hermann V, Holmblad CA, Bartlett T (1994) J Electrochem Soc 141:1025

    Article  CAS  Google Scholar 

  12. Zhang JG, Tracy CE, Benson DK, Deb SK (1993) J Mater Res 8:2649

    Article  CAS  Google Scholar 

  13. Yamanaka K (1987) Jpn J Appl Phys 26:1884

    Article  CAS  Google Scholar 

  14. Meulenkamp E (1997) J Electrochem Soc 144:1664

    Article  CAS  Google Scholar 

  15. Stevenson KJ, Hurtt GJ, Hupp JT (1999) Electrochem Solid State Lett 2:175

    Article  CAS  Google Scholar 

  16. Krasnov YS, Kolbasov GY (2004) Electrochem Acta 49:2425

    Article  CAS  Google Scholar 

  17. Deepa M, Kar M, Agnihotry SA (2004) Thin Solid Films 468:32

    Article  CAS  Google Scholar 

  18. Gregg BA (1997) Endeavour 21:52

    Article  CAS  Google Scholar 

  19. Li F, Cheng F, Shi J, Cai F, Liang M, Chen J (2007) Journal of Power Sources 165:911

    Article  CAS  Google Scholar 

  20. De Paoli MA, Nogueira AF, Machado DA, Longo C (2001) Electrochim Acta 46:4243

    Article  Google Scholar 

  21. Li M, Feng S, Fang S, Xiao X, Li X, Zhou X, Lin Y (2007) Electrochim Acta 52:4858

    Article  CAS  Google Scholar 

  22. Biancardo M, West K, Krebs C (2007) Journal of Photochemistry and Photobiology A: Chemistry 187:395

    Article  CAS  Google Scholar 

  23. Nogueira AF, De Paoli MA, Montanari I, Monkhouse R, Nelson J, Durrant JR (2001) J Phys Chem B 105:7517

    Article  CAS  Google Scholar 

  24. Habazaki H, Hayashi Y, Konno H (2002) Electrochim Acta 47:4181

    Article  CAS  Google Scholar 

  25. Faughnan BW, Crandall RS, Heyman PM (1975) RCA Rev 36:177

    CAS  Google Scholar 

  26. Hu H, Hechavarría L, Campos J (2003) Solid State Ionics 161:165

    Article  CAS  Google Scholar 

  27. Srivastava AK, Deepa M, Singh S, Kishore R, Agnihotry SA (2005) Solid State Ionics 176:1161

    Article  CAS  Google Scholar 

  28. Bessiere A, Badot JC, Certiat MC, Livage J, Lucas V, Baffier N (2001) Electrochim Acta 46:2251

    Article  CAS  Google Scholar 

  29. Omanovic S, Metikos-Hukovic M (2004) Thin Solid Films 458:52

    Article  CAS  Google Scholar 

  30. Weppner W, Huggins RA (1977) J Electrochem Soc 124:1569

    Article  CAS  Google Scholar 

  31. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343

    Article  CAS  Google Scholar 

  32. Vijaylakshmi R, Jayachandran M, Sanjeeviraja S (2003) Curr Appl Phys 3:171

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Rogelio Morán for mechanical design of experimental setup, José Campos for electrical measurement assistance, Ma. Luisa Ramón for XRD experiments, and Mary Cruz Resendiz for AFM images. The financial support from Programa de Apoyo a Proyectos de Investigación e Inovación Tecnológica de la Universidad Nacional Autónoma de México (PAPIIT-UNAM, IN104607) and Consejo Nacional de Ciencia y Tecnología (CONACyT-México, 42794) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hechavarría, L., Hu, H., Miranda, M. et al. Electrochromic responses of low-temperature-annealed tungsten oxide thin films in contact with a liquid and a polymeric gel electrolyte. J Solid State Electrochem 13, 687–695 (2009). https://doi.org/10.1007/s10008-008-0565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0565-8

Keywords

Navigation