Skip to main content
Log in

Paramagnetic pyrrole-based semiconductor molecular material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 17 June 2008

Abstract

The electrochemical oxidation of hexa-N-pyrrolylbenzene in organic media leads, via intramolecular coupling of the pyrrole residues, to the deposition of a molecular semiconductor film on an electrode surface. In situ electron spin resonance–electrochemical experiments reveal that the semiconductor is endowed with both properties of conducting polymers (i.e., reversible oxidation) and polyaromatic molecular materials (i.e., highly paramagnetic). The material, which is easy to process as soft homogeneous thin film, shows a tunable 0 to 1 spin concentration per molecule at room temperature by controlling the electrochemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takahashi M, Turek P, Nakazawa Y, Tamura M, Nozawa K, Shiomi D, Ishikawa M, Kinoshita M (1991) Phys Rev Lett 67:746

    Article  CAS  Google Scholar 

  2. Jérôme D, Mazaud A, Ribault M, Bechgaard K (1980) J Phys Lett (Paris) 41:L–95

    Google Scholar 

  3. Dhawan SK, Singh N, Venkatachalam S (2002) Synth Met 125:389

    Article  CAS  Google Scholar 

  4. Freise EJ (1962) Nature 191:671

    Article  Google Scholar 

  5. Zander M, Collin G (1992) Fuel 72:1281

    Article  Google Scholar 

  6. Doriomedoff M, Cristofini FH, Surville RD, Jozefowicz M, Yu LT, Buvet R (1971) J Chim Phys 68:1055

    CAS  Google Scholar 

  7. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, Diarmid AGM (1977) Phys Rev Lett 39:1098

    Article  CAS  Google Scholar 

  8. Vegh D, Hrnciarikova K, Zalupsky P, Skakalova V, Fedorko P, Cik G (1997) 22nd Conference on Advances in Organic Chemistry. Papiernicka, Slovak Republic, pp 11–13 May

    Google Scholar 

  9. Lazerges M, Jouini M, Hapiot P, Guiriec P, Lacaze PC (2003) J. Phys. Chem. A. 107:5042

    Article  CAS  Google Scholar 

  10. Biemans HAM, Zhang C, Smith P, Kooijman H, Smeets WJJ, Spek AL, Meijer EW (1996) J Org Chem 61:9012

    Article  CAS  Google Scholar 

  11. Bäumler E (1989) Farben, Formeln, Forscher Hoechst und die Geschichte der industriellen Chemie. Riper, Munich

    Google Scholar 

  12. Clar E, Mackay CC (1972) Tetrahedron 28:6041

    Article  CAS  Google Scholar 

  13. Müller M, Kübel C, Müllen K (1998) Chem Eur J 36:833

    Google Scholar 

  14. Boenigk W, Haenel MW (1995) Fuel 74:305

    Article  CAS  Google Scholar 

  15. Beamson G, Briggs D (1992) High Resolution of Organic Polymers. Wiley, Chichester

    Google Scholar 

  16. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray Photoelectron Spectroscopy. PERKIN-Elmer, Minnesota

    Google Scholar 

  17. Robinson JW (1991) Practical Handbook of Spectroscopy. CRC, London

    Google Scholar 

  18. Briggs D, Seah MP (1990) Practical Surface Analysis, 2nd edn. Wiley, Chichester

    Google Scholar 

  19. Dall’Olio A, Dascola Y, Varacca C, Bocchi V (1968) C. R. Acad Sci Ser C 267:433

    CAS  Google Scholar 

  20. Diaz AF, Castillo J, Kanazawa KK, Logan JA, Salmon M, Fajardo O (1982) J Electroanal Chem 133:233

    Article  CAS  Google Scholar 

  21. Scott DW (1971) J Mol Spectrosc 37:77

    Article  CAS  Google Scholar 

  22. Acevedo-Gonzales CA, Campos-Valletté M, Clavijo-Campos RE (1986) Spectrochim Acta 42A:919

    Google Scholar 

  23. Lord RC, Marston AL, Miller FA (1957) Spectrochim Acta 9:113

    Article  CAS  Google Scholar 

  24. Simmons JD, Innes KK, Begun G (1964) J Mol Spectrosc 14:190

    Article  CAS  Google Scholar 

  25. Seiders TJ, Baldridge KK, Grube GH, Siegel JS (2001) J Am Chem Soc 123:517

    Article  CAS  Google Scholar 

  26. Fichou D, Horowitz G, Garnier F (1990) Synth Met 39:125

    Article  CAS  Google Scholar 

  27. Brédas JL, Street GB (1985) Acc Chem Res 18:309

    Article  Google Scholar 

  28. Miller LL, Tu Y, Esmir G, Duan R (1995) Adv Mat 5:547

    Article  Google Scholar 

  29. Scott JC, Pfluger P, Krounbi MT, Street GB (1983) Phys Rev B 28:2140

    Article  CAS  Google Scholar 

  30. Bäuerle P, Segelbacher U, Gaudl KU, Huttenlocher D, Mehring M (1993) Angew Chem Int Ed Engl 32:76

    Article  Google Scholar 

  31. Haare JAEHV, Groenendaal L, Having EE, Janssen RAJ, Meijer EW (1996) Angew Chem Int Ed Engl 35:638

    Article  Google Scholar 

  32. Genou F, Guglielmi M, Nechtschein M, Genies E, Salmon M (1985) Phys Rev Lett 55:118

    Article  Google Scholar 

  33. Krusik PJ, Wasserman E (1991) J Am Chem Soc 113:2322

    Article  Google Scholar 

  34. Breslow R, Maslak P, Thomaides JS (1984) J Am Chem Soc 106:6453

    Article  CAS  Google Scholar 

  35. Lepage TJ, Breslow R (1987) J Am Chem Soc 109:6412

    Article  CAS  Google Scholar 

  36. Bechgaard K, Parker VD (1972) J Am Chem Soc 94:4749

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by fellowship for Dr. Mathieu Lazerges from the ‘Ministère de l’Education et de la Recherche Française'. The authors thank Pr. Kacem Zellama (Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne) for conductivity measurements, Dr. Jean-Claude Blais (Laboratoire de Chimie Structurale Organique et Biologique, Université Paris VI Pierre et Marie Curie) for MALDI TOF analysis, Dr. Alain Adenier (ITODYS, Université Paris VII Denis Diderot) for FTIR measurements, Dr. Mehdi Chehimi (ITODYS, Université Paris VII Denis Diderot) for XPS measurements, Stephan Borensztajn (Laboratoire Interfaces et Systèmes Electrochimiques, Université Paris VI Pierre et Marie Curie) for SEM photos, Dr. John Sydney Lomas, Dr. Gilles Horowitz (ITODYS, Université Paris VII Denis Diderot) and Monique Lecomte (Laboratoire Génie Analytique, CNAM Paris) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jouini.

Additional information

Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on the Electrochemical–Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September, 2007.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10008-008-0596-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazerges, M., Chane-Ching, K.I., Aeiyach, S. et al. Paramagnetic pyrrole-based semiconductor molecular material. J Solid State Electrochem 13, 231–238 (2009). https://doi.org/10.1007/s10008-008-0549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0549-8

Keywords

Navigation