Skip to main content
Log in

Recent advances in synthesis and analysis of Fe(VI) cathodes: solution phase and solid-state Fe(VI) syntheses, reversible thin-film Fe(VI) synthesis, coating-stabilized Fe(VI) synthesis, and Fe(VI) analytical methodologies

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fe(VI) batteries based on unusual ferrate cathodic charge storage have been studied for quite a few years. So far, a class of Fe(VI) compounds have been successfully synthesized and studied as the cathodic materials in both alkaline and nonaqueous battery systems. This paper provides a summary of the syntheses of a range of Fe(VI) cathodes including the alkali Fe(VI) salts Li2FeO4, K x Na(2−x)FeO4, K2FeO4, Rb2FeO4, Cs2FeO4, as well as alkali earth Fe(VI) salts CaFeO4, SrFeO4, BaFeO4, and a transition metal Fe(VI) salt Ag2FeO4. Two synthesis routes summarized in this paper are the solution phase synthesis and the solid-state synthesis. Preparation of coating-stabilized (coated with KMnO4, SiO2, TiO2, or ZrO2) Fe(VI) cathodes and preparation of thin-film reversible Fe(VI/III) cathodes are also presented. Fe(VI) analytical methodologies summarized in this paper include Fourier transform infrared spectrometry, titrimetric (chromite), ultraviolet-visible spectroscopy, X-ray diffraction, inductively coupled plasma spectroscopy, Mössbauer spectrometry, potentiometric, galvanostatic, and cyclic voltammetry. Cathodic charge transfer of Fe(VI) is also briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Carr JD, Kelter PB, Tabatabai A, Splichal D, Erickson J, Mclaughlin CW (1985) In: Jolly RL (ed) Proc. 5th Conference of Water Chlorination. Lewis, Chelsea, MI, pp 1285

  2. Sharma VK, Smith JO, Millero FJ (1997) Environ Sci Technol 31:2486

    Article  CAS  Google Scholar 

  3. Licht S, Yu X (2005) Environ Sci Technol 39:8071

    Article  CAS  Google Scholar 

  4. Jiang JQ (2007) J Hazard Mater 146:617

    Article  CAS  Google Scholar 

  5. Jiang J, Wang S, Panagoulopoulos A (2007) Desalination 210:266

    Article  CAS  Google Scholar 

  6. Delaude L, Laszlo P (1996) J Org Chem 61:6360

    Article  CAS  Google Scholar 

  7. Licht S, Wang B, Ghosh S (1999) Science 285:1039

    Article  CAS  Google Scholar 

  8. Licht S, Wang B, Ghosh S, Li J, Naschitz V (1999) Electrochem Commun 1:522

    Article  CAS  Google Scholar 

  9. Licht S, Wang B, Xu G, Li J, Naschitz V (1999) Electrochem Commun 1:527

    Article  CAS  Google Scholar 

  10. Licht S, Wang B, Li J, Ghosh S, Tel-Vered R (2000) Electrochem Commun 2:535

    Article  CAS  Google Scholar 

  11. Licht S, Wang B (2000) Electrochem Solid-State Lett 3:209

    Article  CAS  Google Scholar 

  12. Licht S, Naschitz V, Ghosh S, Lin L, Liu B (2001) Electrochem Commun 3:340

    Article  CAS  Google Scholar 

  13. Licht S, Naschitz V, Ghosh S, Liu B, Halperine N, Halperin L, Rozen D (2001) J Power Sources 99:7

    Article  CAS  Google Scholar 

  14. Licht S, Naschitz V, Lin L, Chen J, Ghosh S, Liu B (2001) J Power Sources 101:167

    Article  CAS  Google Scholar 

  15. Licht S, Ghosh S, Dong Q (2001) J Electrochem Soc 148:A1072

    Article  CAS  Google Scholar 

  16. Licht S, Naschitz V, Ghosh S (2001) Electrochem Solid-State Lett 4:A209

    Article  CAS  Google Scholar 

  17. Licht S, Ghosh S, Naschitz V, Halperin N, Halperin L (2001) J Phys Chem B 105:11933

    Article  CAS  Google Scholar 

  18. Licht S, Ghosh S (2002) J Power Sources 109/2:465

    Article  Google Scholar 

  19. Licht S, Naschitz V, Ghosh S (2002) J Phys Chem B 106:5947

    Article  CAS  Google Scholar 

  20. Licht S, Tel-Vered R, Halperin L (2002) Electrochem Comm 4:933

    Article  CAS  Google Scholar 

  21. Licht S, Naschitz V, Wang B (2002) J Power Sources 109:67

    Article  CAS  Google Scholar 

  22. Lee J, Tryk D, Fujishima A, Park S (2002) Chem Commun 5:486

    Article  Google Scholar 

  23. Yang W, Wang J, Pan T, Xu J, Zhang J, Cao C (2002) Electrochem Commun 4:710

    Article  CAS  Google Scholar 

  24. Yang W, Wang J, Zhang Z, Zhang J, Cao C (2002) Chin Chem Lett 13:761

    CAS  Google Scholar 

  25. Tel-Vered R, Rozen D, Licht S (2003) J Electrochem Soc 150:A1671

    Article  CAS  Google Scholar 

  26. Ghosh S, Wen W, Urian RC, Heath C, Srinivasamurthi V, Reiff W, Mukerjee S, Naschitz V, Licht S (2003) Electrochem Solid-State Lett 6:A260

    Article  CAS  Google Scholar 

  27. De Koninck M, Brousse T, Belanger D (2003) Electrochim Acta 48:1425

    Article  Google Scholar 

  28. Licht S, Tel-Vered R, Halperin L (2004) J Electrochem Soc 151:A31

    Article  CAS  Google Scholar 

  29. Licht S, Tel-Vered R (2004) Chem Commun 6:628

    Article  Google Scholar 

  30. Licht S, Naschitz V, Rozen D, Halperin N (2004) J Electrochem Soc 151:A1147

    Article  CAS  Google Scholar 

  31. Zhang C, Liu Z, Wu F, Lin L, Qi F (2004) Electrochem Commun 6:1104

    Article  CAS  Google Scholar 

  32. Walz K, Suyama A, Suyama W, Sene J, Zeltner W, Armacanqui E, Roszkowski A, Anderson M (2004) J Power Sources 134:318

    Article  CAS  Google Scholar 

  33. Licht S, Yang L, Wang B (2005) Electrochem Commun 7:931

    CAS  Google Scholar 

  34. Nowik I, Herber RH, Koltypin M, Aurbach D, Licht S (2005) J Phys Chem Solids 66:1307

    Article  CAS  Google Scholar 

  35. Koltypin M, Licht S, Tel-Vered R, Naschitz V, Aurbach D (2005) J Power Sources 146:723

    Article  CAS  Google Scholar 

  36. Ayers K, White N (2005) J Electrochem Soc 152:A467

    Article  CAS  Google Scholar 

  37. Koltypin M, Licht S, Nowik I, levi E, Gofer Y, Aurbach D (2006) J Electrochem Soc 153:A32

    Article  CAS  Google Scholar 

  38. Licht S, DeAlwis C (2006) J Phys Chem B 110:12394

    Article  CAS  Google Scholar 

  39. Licht S, Yu X, Zheng D (2006) Chem Commun 41:4341

    Article  Google Scholar 

  40. Walz K, Szczech J, Suyama A, Suyama W, Stoiber L, Zeltner W, Armacanqui E, Anderson M (2006) J Electrochem Soc 153:A1102

    Article  CAS  Google Scholar 

  41. Licht S, Yu X, Qu D (2007) Chem Commun 26:2753

    Article  Google Scholar 

  42. Yu X, Licht S (2007) J Power Sources 171:966

    Article  CAS  Google Scholar 

  43. Yu X, Licht S (2007) J Power Sources 171:1010

    Article  CAS  Google Scholar 

  44. Yu X, Licht S (2007) Electrochim Acta 52:8138

    Article  CAS  Google Scholar 

  45. Yu X, Licht S (2007) J Power Sources 173:1012

    Article  CAS  Google Scholar 

  46. Walz K, Handrick A, Szczech J, Stoiber L, Suyama A, Suyama W, Zeltner W, Johnson C, Anderson M (2007) J Power Sources 167:545

    Article  CAS  Google Scholar 

  47. Xu Z, Wang J, Shao H, Tang Z, Zhang J (2007) Electrochem Commun 9:371

    Article  CAS  Google Scholar 

  48. Schryer J, Thompson G, Ockerman L (1951) J Am Chem Soc 73:1379

    Google Scholar 

  49. Li C, Li X, Graham N (2005) Chemosphere 61:537

    Article  CAS  Google Scholar 

  50. Kanari N, Ostrosi E, Ninane L, Neveux N, Evrard O (2005) JOM 57:39

    Article  CAS  Google Scholar 

  51. Wang Y, Zhou N, Ye S, Gao X (2003) Chin Electrochem 9:15

    CAS  Google Scholar 

  52. Bouzek K, Lipovska M, Schmidt M, Rousar I, Wragg A (1998) Electrochim Acta 44:547

    Article  CAS  Google Scholar 

  53. De Koninck M, Belanger D (2003) Electrochim Acta 48:1435

    Article  Google Scholar 

  54. He W, Wang J, Yang C, Zhang J (2006) Electrochim Acta 51:1967

    Article  CAS  Google Scholar 

  55. Lapicque F, Valentin G (2002) Electrochem Commun 4:764

    Article  CAS  Google Scholar 

  56. He W, Wang J, Shao H, Zhang J Cao C (2005) Electrochem Commun 7:607

    Article  CAS  Google Scholar 

  57. Gump J, Wagner W (1954) Trans Kent Acad Sci 15:112

    CAS  Google Scholar 

  58. Gump J, Wagner W, Schreyer J (1954) Anal Chem 26:1957

    Article  CAS  Google Scholar 

  59. Ettl V, Veprek-Siska J (1969) Collect Czechoslov Chem Commun 34:2182

    Google Scholar 

  60. Yang W, Wang J, Pan T, Cao F, Zhang J, Cao C (2004) Electrochim Acta 49:3455

    Article  CAS  Google Scholar 

  61. Herber R, Johnson D (1979) Inorg Chem 18:2786

    Article  CAS  Google Scholar 

  62. Losana L (1925) Gazzeta Chimica Italiana 55:468

    CAS  Google Scholar 

  63. Yang W, Wang J, Yang Z, Pan T, Zhang J (2005) Chin J Chem Phys 18:105

    CAS  Google Scholar 

  64. Firouzabadi H, Mohajer D, Moghaddam M (1986) Synth Commun 16:211

    Article  CAS  Google Scholar 

  65. Wang Y, Muramatsu A, Sugimoto T (1998) Colloids Surf 134:281

    Article  CAS  Google Scholar 

  66. Tripathi A, Kamble V, Gupta N (1999) J Catal 187:332

    Article  CAS  Google Scholar 

  67. Audette R, Quail J (1972) Inorg Chem 11:1904

    Article  CAS  Google Scholar 

  68. Sun Y, Pan J, Wan P, Liu X (2003) Chin J Power Sources 27:518

    CAS  Google Scholar 

  69. Lin Z, Chen Y, Chen R, Zheng X, Chen Z (2003) Chin Battery Bimonthly 33:187

    CAS  Google Scholar 

  70. Zhou Z, Liao Z (2003) Chin J Power Sources 27:497

    CAS  Google Scholar 

  71. Fang X, Fang C, Chen J (1996) J Chin Ceram Soc 6:732

    Google Scholar 

  72. Hettiarachchi S, Kedzierzawski P, Macdonald D (1985) J Electrochem Soc 132:1866

    Article  CAS  Google Scholar 

  73. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) J Colloid Interface Sci 297:426

    Article  CAS  Google Scholar 

  74. Parks G, De Bruyn P (1962) J Phys Chem 66:967

    Article  CAS  Google Scholar 

  75. King RB (1995) Ency Inorg Chem 8:4480

    Google Scholar 

  76. Clearfield A, Nancollas G, Blessing R (1973) In: Marinsky JA (ed) Ion exchange and solvent extraction, vol. 5. Decker, New York, pp 1–120

  77. Jia H, Bao G (2004) Chin Battery Bimonthly 34:430

    CAS  Google Scholar 

  78. Jeannot C, Malaman B, GeHrardin R, Oulladiaf B (2002) J Solid State Chem 165:266

    Article  CAS  Google Scholar 

  79. Deganelloa F, Liottaa L, Longoa A, Casalettoa M, Scopelliti M (2006) J Solid State Chem 179:3406

    Article  Google Scholar 

  80. Dedushenko S, Zhizhin M, Perfiliev Y (2006) Hyperfine Interact 166:367

    Article  Google Scholar 

  81. Tazi A, Bendriss A, Badrour L, Mouahid F, Zahir M (2005) Phys Chem News 26:104

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Licht, S. Recent advances in synthesis and analysis of Fe(VI) cathodes: solution phase and solid-state Fe(VI) syntheses, reversible thin-film Fe(VI) synthesis, coating-stabilized Fe(VI) synthesis, and Fe(VI) analytical methodologies. J Solid State Electrochem 12, 1523–1540 (2008). https://doi.org/10.1007/s10008-008-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0541-3

Keywords

Navigation