Skip to main content
Log in

Effect of cosintering of anode–electrolyte bilayer on the fabrication of anode-supported solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A comparative study is carried out on the effect of cosintering temperature of anode–electrolyte bilayer on the fabrication and cell performance of anode-supported solid oxide fuel cells from commercially available tape casting materials. It was found that the sintering conditions have profound effects on the anode characteristic and cell performance. For low cosintering temperature as low as 1,250 °C, the electrolyte is unable to sinter fully and forms a porous structure which leads to a reduced open-circuit potential and poor cell performance especially under low current output. For further increasing cosintering temperature to 1,350 °C, the cell performance was lower under low current operation. However, the cell performance turns out to be better than that of high-temperature cosintering under high current output. Although at temperature as high as 1,500 °C the cell performs better than that of low temperature cosintering, the trend turn out to be reverse for high current operating due to less anode surface area resulting from overagglomeration of anode layer. An optimal cosintering temperature of 1,350–1,450 °C is recommended for commercially available anode–electrolyte bilayer of anode-supported solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jung GB, Lo KF, Chan SH (2007) J Solid State Electrochem 11:1435

    Article  CAS  Google Scholar 

  2. Nihh NQ (1993) J Am Ceram Soc 76:563

    Article  Google Scholar 

  3. Chen CC, Nasrallah MM, Anderson HU (1994) Solid State Ionics 70:101

    Article  Google Scholar 

  4. Souza SD, Visco SJ, Jonghe LCD (1997) Solid State Ionics 98:57

    Article  Google Scholar 

  5. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC (1999) J Electrochem Soc 146:69

    Article  CAS  Google Scholar 

  6. Lee HY, Oh SM (1996) Solid State Ionics 90:133

    Article  CAS  Google Scholar 

  7. Liu Y, Hashimoto S, Nishino H, Takei K, Mori M (2007) J Power Sources 164:56

    Article  CAS  Google Scholar 

  8. Bao W, Chang Q, Meng G (2005) J Mem Sci 259:103

    Article  CAS  Google Scholar 

  9. Besra L, Zha S, Liu M (2006) J Power Sources 160:207

    Article  CAS  Google Scholar 

  10. Leng YJ, Chan SH, Khor KA, Jiang SP (2004) Int J Hydrogen Energy 29:1025

    Article  CAS  Google Scholar 

  11. De SS, Visco SJ, Jonghe LC (1997) J Electrochem Soc 144(3):L35

    Article  Google Scholar 

  12. Tsai T, Perry E, Barnett SA (1997) J Electrochem Soc 144(5):L130

    Article  CAS  Google Scholar 

  13. Tsai T, Barnett SA (1997) Solid State Ionics 93:207

    Article  CAS  Google Scholar 

  14. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal C (1999) J Electrochem Soc 146(1):69

    Article  CAS  Google Scholar 

  15. Cruickshank J, Scott K (1998) J Power Sources 70:40

    Article  CAS  Google Scholar 

  16. Valdez TI, Narayanan SR (1998) Electrochem Soc Proc 98(27):382

    Google Scholar 

  17. Jung GB, Su A, Tu CH, Weng FB (2005) J Fuel Cell Sci Technol 2(2):81

    Article  CAS  Google Scholar 

  18. Fukui T, Murata K, Ohara S, Abe H, Naito M, Nogi K (2004) J Power Sources 125:17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support by the National Science Council of Taiwan under contract no. 95-2218-E-155–003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Bin Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, GB., Wei, CJ., Su, A. et al. Effect of cosintering of anode–electrolyte bilayer on the fabrication of anode-supported solid oxide fuel cells. J Solid State Electrochem 12, 1605–1610 (2008). https://doi.org/10.1007/s10008-008-0537-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0537-z

Keywords

Navigation