Skip to main content
Log in

On-line mass spectrometry of the electro-oxidation of methanol in acidic media on tungsten carbide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg−1 was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z = 44); no methylformate (m/z = 60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levy R, Boudart M (1973) Science 181:547

    Article  CAS  Google Scholar 

  2. Detacconi NR, Lezna RO, Beden B, Lamy C (1994) J Electroanal Chem 379:329

    Article  Google Scholar 

  3. Ishikawa Y, Liao MS, Cabrera CR (2000) Surf Sci 463:66

    Article  CAS  Google Scholar 

  4. Liu RX, Iddir H, Fan Q, Hou GY, Bo AL, Ley KL, Smotkin ES, Sung YE, Kim H, Thomas S, Wieckowski A (2000) J Phys Chem B. 104:3518

    Article  CAS  Google Scholar 

  5. Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES (1999) Electrochem Solid-State Lett 2:12

    Article  CAS  Google Scholar 

  6. Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2002) Electrochem Commun 4:442

    Article  CAS  Google Scholar 

  7. Götz M, Wendt H (1998) Eletrochim Acta 43:3637

    Article  Google Scholar 

  8. Ley KL, Liu RX, Pu C, Fan QB, Leyarovska N, Segre C, Smotkin ES (1997) J Eletrochem Soc 144:1543

    Article  CAS  Google Scholar 

  9. Schmidt TJ, Gasteiger HA, Behm RJ (1999) Electrochem Comm 1:1

    Article  CAS  Google Scholar 

  10. Ross PN, Stoneheart P (1977) J Catal 48:42

    Article  CAS  Google Scholar 

  11. Kudo T, Kawamura G, Okamoto H (1983) Electrochem Soc 130:1491

    Article  CAS  Google Scholar 

  12. Okamoto H, Kawamura G, Ishikawa A, Kudo T (1987) J Electrochem Soc 134:1649

    Article  CAS  Google Scholar 

  13. Kawamura G, Okamoto H, Ishikawa A, Kudo T (1987) J Electrochem Soc 134:1653

    Article  CAS  Google Scholar 

  14. Hwu HH, Chen JGG, Kourtakis K, Lavin JG (2001) J Phys Chem B 105:10037

    Article  CAS  Google Scholar 

  15. Hwu HH, Polizzotti BD, Chen JGG (2001) J Phys Chem B 105:10045

    Article  CAS  Google Scholar 

  16. Zellner MB, Chen JGG (2005) Catal Today 99:299

    Article  CAS  Google Scholar 

  17. Meng H, Shen PK (2005) J Phys Chem B 109:22705

    Article  CAS  Google Scholar 

  18. Ganesan R, Lee JS (2005) Angew Chem Int Ed 44:6557

    Article  CAS  Google Scholar 

  19. Palanker VSh, Gajyev RA, Sokolsky DV (1977) Electrochim Acta 22:133

    Article  CAS  Google Scholar 

  20. McIntyre DR, Burstein GT, Vossen A (2002) J Power Sources 107:67

    Article  CAS  Google Scholar 

  21. Hyeon TH, Fang MM, Suslick KS (1996) J Am Chem Soc 118:5492

    Article  CAS  Google Scholar 

  22. Cullity BD (1967) Elements of X-ray Diffraction, Addison Wesley

  23. de Souza JPI, Queiroz SL, Nart FC (2000) Quim Nova 23:384

    Google Scholar 

  24. Löfberg A, Frennet A, Leclercq G, Leclercq L, Giraudon JM (2000) J Catal 189:170

    Article  Google Scholar 

  25. Patterson PM, Das TK, Davis BH (2003) Appl Catal A 251:449

    Article  CAS  Google Scholar 

  26. Koc R, Kodambaka SK (2000) J Eur Ceram Soc 20:1859

    Article  CAS  Google Scholar 

  27. Jusys Z, Kaiser J, Behm RJ (2003) Langmuir 19:6759

    Article  CAS  Google Scholar 

  28. Iwasita T (2002) Electrochim Acta 47:3663

    Article  CAS  Google Scholar 

  29. Iwasita T, Vielstich W (1986) J Electroanal Chem 201:403

    Article  CAS  Google Scholar 

  30. Jusys Z, Behm RJ (2001) J Phys Chem B 105:10874

    Article  CAS  Google Scholar 

  31. Jusys Z, Kaiser J, Behm RJ (2002) Electrochim Acta 47:3693

    Article  CAS  Google Scholar 

  32. Hwu HH, Chen JGG (2005) Chem Rev 105:185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. L. J. Deiner thanks FAPESP for a postdoctoral fellowship (Fellowship Process # 04/03051-6). Furthermore, the authors thank Demetrius Profeti for helpful discussions and assistance with the DEMS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo A. Angelucci.

Additional information

In memoriam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelucci, C.A., Deiner, L.J. & Nart, F.C. On-line mass spectrometry of the electro-oxidation of methanol in acidic media on tungsten carbide. J Solid State Electrochem 12, 1599–1603 (2008). https://doi.org/10.1007/s10008-007-0495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0495-x

Keywords

Navigation