Skip to main content
Log in

Precision removal of ITO layer using plate-form tool design

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An ITO layer is produced using semiconductor techniques, although the defect rate during production is easily seen. Current work presents a new modus of electrochemical machining using a ‘design recycle’ system offering faster performance in removing the color filter surface’s ITO layer. Higher electrical current is not required when an effective feeding electrode is used to reduce the response area. Through establishing an ultra-precise recycling process to remove the thin film microstructure, this helps the semiconductor optoelectronic industry to reduce both production costs and pollution. The design features of the removal processes for a thin film and the tool design of plate-form electrode are of major interest. In the current experiment, the author utilizes a 5th Generation TFT-LCD. The design of tool electrodes is used with continuous and pulsed direct current in the electrochemical machining experiment. High rotational speed of the tool electrodes and high flow velocity of the electrolyte elevates the discharge mobility and improves the removal effect. Pulsed direct current can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the workpiece. A color filter with a fast feed rate is combined with enough electric power to provide highly effective removal. A smaller end radius and a thin plate-form positive-electrode provide a larger discharge space and better removal effect. A precision recycling process is presented using an effective plate-form positive-electrode in electrochemical machining. It only needs a short period of time to remove the ITO layer easily and cleanly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shima T, Itakura T, Minamizaki, H, Maruyama T (1997) Proc Int ISSCC’, Kawasaki, Japan 97:192

    Google Scholar 

  2. Avenel E, Barlet C (2000) J Econ Manage Strategy 9(3):211

    Article  Google Scholar 

  3. Takabatake M, Ohwada J, Ono YA, Ono K, Mimura A, Konishi, N (1991) IEEE Trans Electron Devices 38(6):1303

    Article  CAS  Google Scholar 

  4. Guh HS (2004) MNew Wun Ching Developmental Publishing Co., Ltd., Taiwan

  5. Biai I, Quinteda M, Mendes, L et al (1999) Int’l J Thin Solid Films 337:171

    Article  Google Scholar 

  6. Kim H-C, Kwon B-H, Choi M-R (2001) IEEE Trans Electron 47

  7. Daeil K, Steven K (2002) Int’l J Surf Coat Technol 154:204

    Article  Google Scholar 

  8. Lee P, Chen H (2005) IEEE Conference Proceeding 1:780

    Google Scholar 

  9. Wilson J (1971) Wile-Interscience. New York, NY, 79

  10. Phillips RE (1996) Carbide Tool J 18(6):12

    Google Scholar 

  11. Mileham AR, Harrey SJ, Stout KJ (1986) The Characterization of Electrochemically Machined Surfaces, Wear 109:207

    Google Scholar 

  12. McGeough JA (1974) Principles of electrochemical machining. Chapman & Hall, London

    Google Scholar 

  13. Bannard J (1977) J Appl Electrochem 7:267

    Article  CAS  Google Scholar 

  14. Datta M, Landolt D (1983) J Appl Electrochem 13:795

    Article  CAS  Google Scholar 

  15. Shen WM (1995) M.Sc. Thesis, National Yunlin Institute of Techndogy, Taiwan

  16. Mansour SS (1980) I A S; Sedahmed, G H Surface Technol 10(5):357

    Google Scholar 

  17. Datta M, Landolt D (1981) Elector Acta 26(7):899

    Article  CAS  Google Scholar 

  18. Rajurkar KR (1995) Annals of the CIRP 44:177

    Google Scholar 

  19. Cagnon L, Kirchner V, Kock M, Schuster R, Ertl G, Gmelin WT, Kuck, H (2003) Z Phys Chem 217:299

    CAS  Google Scholar 

  20. Jain VK, Yogindra, PG, Murugan S (1987) Int J Mach Tools Manufact 27(1):1135

    Article  Google Scholar 

  21. Hocheng H, Pa PS (2002) 120:6

  22. Hocheng H, Pa PS (2003) J Mater Process Technol 142(1):203

    Article  CAS  Google Scholar 

  23. Hocheng H, Pa PS (2004) 20(4):312

  24. Pa PS (2006) Mater Sci Forum 5:32–533:965

    Article  Google Scholar 

  25. Kim BH, Ryu SH, Choi, SH, Chu CN (2005) J Micromechanics and Microengineering 15:124

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The current study is supported by BEN TEN THE CO., The current study is supported by National Science Council, contract 95-2622-E-152-001-CC3 and 95-2622-E-152-001-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Pa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pa, P.S. Precision removal of ITO layer using plate-form tool design. J Solid State Electrochem 12, 1445–1451 (2008). https://doi.org/10.1007/s10008-007-0492-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0492-0

Keywords

Navigation