Skip to main content
Log in

Local monitoring of surface chemistry with Raman spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The efficiency of Raman scattering from molecules in some nano-resonators can increase by many orders of magnitude. Sometimes, in Raman measurements carried out with such resonators, it is possible to record a spectrum from only a few (or even a single) molecules. In this contribution, we show that resonator-enhanced Raman scattering is very useful for analysis of the electrochemically formed carbon. Carbon material has been formed on the surface of the copper-modified silver electrode during the electrochemical reduction of CO2. The Raman spectra measured were often from only a few carbon clusters. By the analysis of a large series of such spectra, we managed to identify large graphite-like rings and polyenes with various lengths. Some other applications of resonator-enhanced Raman scattering to local characterisation of electrode surfaces (e.g. studies of CO adsorption on gold) are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosasco GJ, Etz ES, Cassatt WA (1975) Appl Spectrosc 29:396

    Article  CAS  Google Scholar 

  2. Delhaye M, Dhamelincourt P (1975) J Raman Spectrosc 3:33

    Article  CAS  Google Scholar 

  3. Pettinger B (2006) Topics Appl Phys 103:217

    Article  CAS  Google Scholar 

  4. Janik-Czachor M, Szummer A, Molnar A, Dolata M, Kudelski A, Varga M, Bukowska J, Sikorski K (2000) Electrochim Acta 45:3295

    Article  CAS  Google Scholar 

  5. Kudelski A, Janik-Czachor M, Varga M, Dolata M, Bukowska J, Molnar A, Szummer A (1999) Appl Catal, A Gen 181:123

    Article  CAS  Google Scholar 

  6. Kudelski A, Janik-Czachor M, Pisarek M, Bukowska J, Mack P, Dolata M, Szummer A (2002) Surf Sci 507:441

    Article  Google Scholar 

  7. Janik-Czachor M, Szummer A, Bukowska J, Molnar A, Mack P, Filipek SM, Kedzierzawski P, Kudelski A, Pisarek M, Dolata M, Varga M (2002) Appl Catal, A Gen 235:157

    Article  CAS  Google Scholar 

  8. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  9. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  10. Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science 273:1688

    Article  CAS  Google Scholar 

  11. Futamata M, Maruyama Y, Ishikawa M (2003) J Phys Chem B 107:7607

    Article  CAS  Google Scholar 

  12. Brown RJC, Wang J, Tantra R, Yardley RE, Milton MJT (2006) Faraday Discuss 132:201

    Article  CAS  Google Scholar 

  13. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Chem Phys Lett 341:1

    Article  CAS  Google Scholar 

  14. Kudelski A (2005) Vib Spectrosc 39:200

    Article  CAS  Google Scholar 

  15. Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932

    Article  CAS  Google Scholar 

  16. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  17. Nie S, Emory SR (1997) Science 275:1102

    Article  CAS  Google Scholar 

  18. Kneipp K, Wang Y, Dasari RR, Feld MS (1995) Appl Spectrosc 49:780

    Article  CAS  Google Scholar 

  19. Kudelski A, Pettinger B (2000) Chem Phys Lett 321:356

    Article  CAS  Google Scholar 

  20. Kudelski A (2006) J Phys Chem B 110:12610

    Article  CAS  Google Scholar 

  21. Kudelski A (2005) Chem Phys Lett 414:271

    Article  CAS  Google Scholar 

  22. Hu A, Lu Q-B, Duley WW, Rybachuk M (2007) J Chem Phys 126:154705

    Article  CAS  Google Scholar 

  23. Itoh K, Kudryashov I, Yamagata J, Nishizawa T, Fujii M, Osaka N (2005) J Phys Chem B 109:271

    Article  CAS  Google Scholar 

  24. Kudelski A (2002) Langmuir 18:4741

    Article  CAS  Google Scholar 

  25. Herrero E, Franaszczuk K, Wieckowski A (1994) J Phys Chem 98:5074

    Article  CAS  Google Scholar 

  26. Tremiliosi-Filho G, Kim H, Chrzanowski W, Wieckowski A, Grzybowska B, Kulesza P (1999) J Electroanal Chem 467:143

    Article  CAS  Google Scholar 

  27. Santra AK, Goodman DW (2002) Electrochim Acta 47:3595

    Article  CAS  Google Scholar 

  28. Kudelski A, Pettinger B (2004) Chem Phys Lett 383:76

    Article  CAS  Google Scholar 

  29. Hashimoto K, Yamasaki M, Meguro S, Sasaki T, Katagiri H, Izumiya K, Kumagai N, Habazaki H, Akiyama E, Asami K (2002) Corros Sci 44:371

    Article  CAS  Google Scholar 

  30. Hashimoto K, Habazaki H, Yamasaki M, Meguro S, Sasaki T, Katagiri H, Matsui T, Fujimura K, Izumiya K, Kumagai N, Akiyama E (2001) Mat Sci Eng A-Struct 304:88

    Article  Google Scholar 

  31. Hashimoto K (1997) Mat Sci Eng A-Struct 226:891

    Article  Google Scholar 

  32. Hori Y, Takahashi I, Koga O, Hoshi N (2002) J Phys Chem B 106:15

    Article  CAS  Google Scholar 

  33. Takahashi I, Koga O, Hoshi N, Hori Y (2002) J Electroanal Chem 533:135

    Article  CAS  Google Scholar 

  34. Yano H, Shirai F, Nakayama M, Ogura K (2002) J Electroanal Chem 519:93

    Article  CAS  Google Scholar 

  35. Lee J, Tak Y (2001) Electrochim Acta 46:3015

    Article  CAS  Google Scholar 

  36. Kyriacou G, Anagnostopoulos A (1992) J Electroanal Chem 322:223

    Article  Google Scholar 

  37. de Wulf DW, Jin T, Bard AJ (1989) J Electrochem Soc 136:1686

    Article  Google Scholar 

  38. Kudelski A (2006) Chem Phys Lett 427:206

    Article  CAS  Google Scholar 

  39. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) ChemPhysChem 8:124

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported financially by the Ministry of Science and Higher Education (Poland) funds through the Department of Chemistry, the University of Warsaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kudelski.

Additional information

Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical/Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudelski, A. Local monitoring of surface chemistry with Raman spectroscopy. J Solid State Electrochem 13, 225–230 (2009). https://doi.org/10.1007/s10008-007-0487-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0487-x

Keywords

Navigation