Journal of Solid State Electrochemistry

, Volume 12, Issue 10, pp 1185–1204 | Cite as

Modified carbon-containing electrodes in stripping voltammetry of metals

Part I. Glassy carbon and carbon paste electrodes
  • Natalya Yu. Stozhko
  • Natalya A. Malakhova
  • Mikhail V. Fyodorov
  • Khiena Z. Brainina
Open Access
Review Paper

Abstract

Papers dealing with modified electrodes made of carbon materials and composites for use in stripping voltammetry of metals have been reviewed. The review consists of two parts, of which the first considers applications of modified glassy carbon and carbon paste electrodes, while the second describes diverse modified carbon-containing composite and microscopic electrodes. Information about modifiers, electrode modification methods, conditions, and limits of detection of elements in different materials has been tabulated. The review covers 550 papers published in Russia and abroad between 1990 and the first half of 2007.

Keywords

Modified electrodes Glassy carbon Carbon paste electrodes Stripping Voltammetry Metal ions determination 

Introduction

Voltammetry is one of the most universal methods of electroanalytical chemistry, which is widely used as a technique for measurement of concentrations of substances and as a tool for analysis of their properties. The growing number of papers concerned with problems and urgent issues of voltammetry is indicative of the increasing interest among chemists to this method. The general status and future trends of voltammetry and electrochemical sensors are described in the reviews [1, 2, 3, 4, 5, 6, 7]. A priority line of its development that follows from the analysis of those papers is the creation, the study and the use of new electrodes, electrochemical sensors [8], transducers, and detectors for automated, flow-through, and “field” analysis. This is because the electrochemical signal is formed by processes taking place on the electrode surface. Therefore, the condition of the electrode surface, which depends on the origin, the defect content, and the mechanical inhomogeneity of the material, determines many significant quantitative characteristics of electrochemical measurement systems. Required electrochemical properties of the electrode can be obtained if its surface is modified purposefully. Therefore, the modification and the “molecular design” of the transducer surface and the formation of grafted layers on solid surfaces constitute an actively developing new area of investigation. Problems of the chemical modification of solid surfaces, specific and regular features of the modifier attachment to various solid matrices, and examples of practical applications of chemical sensors (modified electrodes) are overviewed in the papers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Over a period of years, the development of the voltammetric method was connected with metal, primarily mercury, electrodes. But mercury is an extremely toxic material. This element presents the first-rate hazard leading to severe poisoning and heavy diseases. For this reason, some countries (USA, Japan, EC) have declared a moratorium on the use of mercury in storage batteries, lamps, thermometers, pesticides, etc. Electrodes made of nontoxic materials also tend to smoothly force out mercury electrodes in electroanalysis. As an alternative to toxic mercury electrodes, electrodes of a nontoxic “dental” amalgam (Ag2Hg3 with the surplus silver; [22, 23]) have been developed and used for measurements of heavy metals. Carbon materials (CMs) possessing some attractive features [24, 25] are widely used as mercury-free current-conducting electrode materials. Firstly, depending on the CM type, the character of the electrical conduction can change from the metal to the semiconductor conduction suggesting broad potentials for a wide range of capacitive, adsorption, catalytic, and kinetic properties. Secondly, the carbon surface can adsorb a variety of compounds by both the nonspecific physical sorption and the specific chemisorption with a functional coating, which can be formed either under the forced action of reagents or due to the presence of native functional groups resulting from a thermomechanical treatment of the material [25, 26]. Thirdly, the complexation capacity of carbon materials is higher than that of metals. Fourthly, CMs can form strong covalent bonds with some surface modifiers favoring the development of modified electrodes. Fifthly, the carbon surface is electrochemically inert over a wide interval of potentials. All these features predetermine the use of diverse carbon materials in electroanalysis. Glassy carbon, pyrolytic graphite, carbon glass-ceramics, impregnated graphite, carbon fibers, filaments, cloths, gauzes, and composite materials serve as the electrode material. The properties of CM electrodes, their specific features and drawbacks, and applications in voltammetric measurements of substances are described in the Russian reviews published in 1988 and 1990 [27, 28]. The present overview covers papers published in Russia and abroad since 1990. To narrow the borders of an extensive literature stream on modified carbon-containing electrodes for the 17-year period, the current review has been restricted on a method of analysis and analyte. So, the electrodes used for metal ion determination with SV have been described only. All the papers published over this period can be divided into six main groups depending on the type of the electrode used: glassy carbon (GCE), carbon paste (CPE), carbon-containing composite (CCE), impregnated graphite (IGE), thick-film graphite-containing (TFGE) electrodes, carbon microelectrodes (CME), and their arrays (ACME). As Fig. 1 suggests, GCE is the first with respect to the number of papers published over the 15 years. The minimum number of papers, most of which have appeared recently, are dedicated to TFGE and CME. This is due to the fact that these two groups of the electrodes represent recently emerging and vigorously developing lines of research into the use of carbon-containing electrodes.
Fig. 1

Representation of papers published in 1990–2005 depending on electrode type described

Glassy-carbon electrodes

Glassy carbon is isotropic, is almost gas-tight, has low porosity, is very hard, is a good current conductor, and is stable in many corrosive media [25]. The adsorptivity and the reactivity of glassy carbon are low compared to those of other structured graphite materials having a hexagonal or a rhombohedral lattice. These factors account for the low sensitivity of unmodified glassy-carbon electrodes in analysis [29, 30, 31, 32, 33, 34]. The detection limit of elements is reduced by increasing the electrochemical accumulation time (up to 40 min) [35, 36, 37, 38, 39, 40, 41, 42], using additional accumulation operations, e.g., the ultrasonic extraction [43] or modifying the GCE surface.

Table 1 shows some applications of modified GCE for voltammetric measurements of inorganic ions [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190]. Methods of the preliminary modification of the surface (ex situ) and the in-analysis modification (in situ) are widely used for the purposeful transformation of the GCE surface properties. These methods are sometimes combined to enhance the selectivity. For example, a film of a metal or a current-conducting polymer is applied to GCE and a selective organic reagent or mercury, gold, or bismuth ions, which co-precipitate with the element to be determined, are added to the solution. GC is a preferable substrate for mercury film electrodes [191]. In this case, the two-layer modification of the surface is realized by the “ex situ/in situ” scheme. On occasion, up to three modified layers each, having its specific application and certain function, are built up on the surface. For example, the layer-by-layer modification by a clay mineral, a cation-exchange cross-linked polymer and mercury [156] results in that the GCE surface forms a layer, which possesses cation-exchange properties, can form an amalgam, and separates coarse molecules or cations.
Table 1

Моdified glassy carbon electrodes

Modifiera

Manner

Analyte

Detection limit (М)

Supporting electrolyteb

Sweep modec

Purged

Samplee

Reference

Hg

In situ

Ni (II)

2∙10–6

30 gL−1 H3PO4 + 70 gL−1 Na2SO4 + 10 gL−1 NaCl + Hg (II) (pH 4.5)

LS АSV

Nickel electrodeposits

[44]

Hg

In situ

Pd (II)

9∙10–6

0.2 М KCl (pH 3) + Hg (II) (Hg:Pd ≤ 1:10)

LS АSV

BGD

[45]

Hg

In situ

Fe (II, III), Mn (II)

1∙10–6

0.5 М NaCl + Hg (II) (pH 4.0–6.0 for Mn, pH 3.5–4.0 for Fe)

LS АSV

+

Sea, drinking, service waters

[46]

Hg

In situ

Pb (II), Cd (II)

4.5∙10–12 (Cd); 1∙10–9 (Pb)

0.01 М amm. buff. (pH 5.6) + 5∙10–3 М SCN + 3∙10–5 М Hg (II)

SQW АSV

+

Lake water

[47]

Hg

In situ

Cd (II), Pb (II), Cu (II)

10–9

0.1 М KNO3 + 0.03 М HNO3 + 1∙10–4 М Hg(NO3)2

LS АSV

BGD

[48]

Hg

In situ

Pb (II), Cd (II), Bi (III)

5∙10–4% (Pb); 2∙10–5% (Cd); 7∙10–3% (Bi)

0.35 М KCl + 0.01 М HCl + 5∙10–6 М Hg (II) (pH 2.0)

LS АSV

Soils, cement, rocks

[49]

Hg

In situ

Cu (II), Pb (II), Cd (II)

10–9–10−11

1 М HClO4 + 5∙10–4 М Hg (II)

DP АSV

+

Sea waters

[50]

Hg

In situ

Cu (II), Pb (II), Cd (II)

2∙10–5 (Pb); 7∙10–5 (Cd); 1.6∙10–4 (Cu)

2 М NaCl (0.5 М HCl) + 1∙10–4 М Hg (II)

AC АSV

Surface, waste water

[51]

Hg

In situ

Pb (II), Cd (II), Cu (II), Zn (II)

1∙10–9 (Pb); 1∙10–10 (Cd); 1∙10–8 (Cu); 1∙10–8 (Zn)

1 М LiCl (0.2 М HCl) + 1∙10–4 М Hg(NO3)2

SQW АSV

+

Surface, waste water

[52, 53]

Hg

In situ

Cu (II), Pb (II), Cd (II), Zn (II)

2∙10–10 (Сu); 1∙10–10 (Pb); 7∙10–11 (Сd); 6∙10–10 (Zn)

0.1 М NaAc + 5∙10–5 М Hg (II) (Cu, Cd, Pb); 0.1 М NaAc + 5∙10–5 М Hg (II) + Ga (III) (Zn)

LS АSV

Extract from river sediment

[54]

Hg

In situ

Cu (II), Pb (II), Cd (II), Zn (II)

6∙10–11(Zn); 2∙10–11 (Cd); 1∙10–11 (Pb); 5∙10–11 (Cu)

0.025 М KCl (рН 3.5) + 0.3 gL–1 Hg (II)

DP АSV

+

Sea waters

[55]

Hg

Ex situ

Cu (II)

2∙10–8

0.1 М HNO3

SQW АSV DP АSV

Waters, pharmaceutical preparations

[56]

Hg

Ex situ

Pb (II)

5∙10–9

2.5 М NaCl + 0.25 М asc. ac. + 0.24 М NaOH

DP АSV

+

Soil, air

[57]

Hg

Ex situ

Tl (I)

1∙10–9

0.13 М EDТА + 0.58 М asc. ac.  +   0.7 М NaOH

DP АSV

+

Soils

[58]

Hg

Ex situ

Tl (I)

5∙10–10

0.17 М EDТА + 2 mМ HCl + 0.03 М asc.ac

LS АSV

+

Natural waters

[59]

Hg

Ex situ

Ba (II), Pb (II)

7∙10–10 (Ba); 5∙10–10 (Pb);

0.1 М HClO4 or 80% ethanol  +   0.1 М TBAP

DP АSV

+

BGD

[60]

Hg

Ex situ

Pb (II), Cu (II)

6∙10–11 (Pb); 2∙10–10 (Cu)

0.01 М NH4Ac–HCl   +   1.2∙10–4 mМ NaSCN (pH 3.4)

DP АSV

Sea water

[61]

Hg

Ex situ

Pb (II), Cu (II), Cd (II)

10–9

0.05 М HCl + 70% methanol (pH 4–6)

DP АSV

+

Foodstuffs

[62]

Hg

Ex situ

Pb (II), Cu (II), Cd (II)

10–7

0.1 M HNO3 + 5–10 gL−1 SDS

DP АSV

+

Fruit juice, wine, beer, milk powder, waste water

[63]

Hg

Ex situ

Zn (II), Cu (II), Pb (II), Cd (II)

5∙10–10–1∙10–9

0.1 М KNO3 + 2 mМ HNO3

SQW АSV

Waste water

[64]

Hg

Ex situ

Zn (II), Cu (II), Pb (II), Cd (II)

4∙10–7 (Zn); 2.7∙10–9 (Cd); 6.8∙10–9 (Pb); 4∙10–8 (Cu)

0.2 М HNO3

SQW АSV

Sweet water

[65]

Hg

Ex situ

Zn (II), Cu (II), Pb (II), Cd (II)

8∙10–9 (Zn); 9.7∙10–9 (Cu); 1.6∙10–8(Pb); 8.6∙10–9 (Cd)

0.01 М LiCl (pH 2.9)

SQW АSV

+

Fuel

[66]

Hg

Ex situ

Сu (II), Pb (II), Cd (II), Zn (II)

1 ng g−1

0.075 М NaNO3

LS АSV

+

Sugar, syrup

[67]

Hg

Ex situ

Cu (II), Pb (II), Cd (II), Zn (II)

10–8 –10–9

0.1 М citric acid   +   1∙10–4 М Fe (III)

LS АSV

BGD, extracts from turf

[68]

Hg/Сu

Ex situ/in situ

Se (IV)

1∙10–9

0.1 М HClO4 + 1 mgL−1 Cu (II) + 0.02 М NaSCN   +   5∙10–3 М EDТА

DP CSV

+

BGD

[69]

Hg, 8HXQ

In situ

Mo (VI)

5∙10–9

0.2 М NaAc (pH 5.25)   +   5∙10–5 М Hg (II) + 10–3 М 8HXQ

DP CSV

+

Biomaterials and background objects

[70]

Hg, DMG

In situ

Ni (II)

1.3∙10–10

0.1 М KNO3 + 2∙10–4 М DMG   +   5∙10–5 М Hg(NO3)2 (pH 9)

SQW CSV

Soils

[71]

Hg/RSH

Ex situ

Cd (II)

4∙10–12

0.01 М NaAc (рН 3.0)

SQW CSV

+

Sea water

[72]

Hg, catechol

In situ

Sn (IV), Pb (II)

5∙10–9 (Pb); 4∙10–9 (Sn)

0.1 М NaAc (рН 4.5) + 5∙10–4 М catechol   +   1 gL−1 Hg (II)

DP CSV

+

Biomaterials, foodstuffs, background objects

[73, 74]

Hg/ EDA

Ex situ/in situ

Cu (II)

 

0.01 М HCl   +   3∙10–3 М EDA

SQW ASV

Sea water

[75]

Hg/ DMG

Ex situ/in situ

Ni (II)

10–6

0.25 М NH3 + 0.25 М NH4NO3 + 0.25 М NaSCN   +   1∙10–4 М DMG

LS CSV

BGD

[76]

Hg/18C6

Ex situ/in situ

Pb (II)

1∙10–4

0.1 М LiNO3 (or LiClO4) + 2.9∙10–3 М 18C6

SQW ASV

+

BGD

[77]

Hg/ CHD or DMG

Ex situ/in situ

Co (II), Ni (II)

1∙10–9

30 mМ HEPES   +   0.1 М NaClO4 (pH 7.4) + CHD or DMG

DP CSV

+

Model mixtures

[78]

Hg/ CHD or DMG

Ex situ/in situ

Co (II), Ni (II)

5∙10–9 (Ni); 2∙10–9 (Co)

0.1 М HEPES (pH 7.4) + 1∙10–4 М CHD or DMG

SQW CSV

Biological liquids

[79]

Hg/ DMG (1), Hg/ 8HXQ (2)

Ex situ/in situ

Ni (II) (1), Cu (II) (2)

9∙10–10 (Ni), 1∙10–9 (Cu)

0.1 М amm. buff. (pH 9) + 0.001 М DMG (Ni); 0.01 М PIPES (pH 6.8) + 5∙10–5 М 8HXQ (Cu)

SQW CSV

BGD

[80]

Au

Ex situ

As (III)

1.6∙10–8

HCl + Na2SO3

DP ASV

+

Natural waters

[81]

Au nanoparticles

Ex situ

As (III)

1.3∙10–10 (LS ASV); 2∙10–10 (SQW ASW)

1 М HCl

LS ASV SQW ASV

+

River waters

[82]

Au

Ex situ

Au (III)

4∙10–9

0.7 М HCl   +   0.32 М HNO3

DP ASV

SS of gold ore

[83]

Au

Ex situ

CH3Hg+

2∙10–8

0.1М NaNO3 + 0.14 М HNO3

DP ASV

Model solution

[84]

Au

Ex situ

Se (IV), Te (IV)

1.3∙10–10(Se); 1.6∙10–10(Te)

0.1 М HNO3

DP ASV

+

Copper

[85]

Au/PVP

Ex situ

Hg (II)

5∙10–10

0.025 М H2SO4 + 0.05 М KCl

SQW ASV

Natural waters

[86]

Cd

In situ

Hg (II)

4.5∙10–9

0.1 М NH4Br   +   10–8 М Cd (II)

LS ASV

Natural waters

[87]

Cu (1); Au (2); Se (3)

In situ

Se (IV), Au (III)

3.8∙10–5 (Se), 1.5∙10–5 (Au)

0.1 М HClO4   +   16(10) mgL−1 Cu(II) (Au(III)) (Se); 0.1 М HClO4 + 10 mgL−1 Se (IV) (Au)

SQW CSV

Vitamins

[88]

Pb

In situ

Ni (II), Co (II)

1.6∙10–9 (Ni); 1∙10–9 (Co)

0.1 M PIPES + 5∙10–3 M DMG + 2.5∙10–5 M Pb(NO3)2 (pH 6–9)

SQW CSV

SS of water and tea leaves

[89]

Pt nanoparticles

In situ

As (III)

2.8∙10–8

1 M HClO4

LS ASV

+

Drinking water

[90]

Bi

In situ

In (III)

10–8

0.1 М NaAc (рН 4.5) + 0.1 М KBr   +   200 µgL−1 Bi (III)

SQW ASV

Model solutions

[91]

Bi

In situ

Zn (II), Cd (II), Pb (II)

1∙10–9 (Pb); 2∙10–9 (Cd); 1∙10–8 (Zn)

0.1 М NaAc   +   500 µgL−1 Bi (III)

SQW ASV

Tap water, biomaterials

[92]

Bi

Ex situ

Cu (II)

7.8∙10–8

0.1 M acet. buff. (pH 4.75) + 2.5∙10–4 M Ga (III)

SQW ASV

 

Model solution

[93]

Bi

Ex situ

Cd (II), Pb (II)

5∙10–7

0.05 М NaAc

SQW ASV

BGD

[94]

Bi

Ex situ

Zn (II), Cd (II)

4.3∙10–7 (Zn); 5.9∙10–9 (Cd)

0.1 М NaAc

SQW ASV

BGD

[95]

Bi

Ex situ

In (III), Tl (I), Cu (II), Cd (II), Pb (II), Zn (II)

10–7

0.1 М NaAc (рН 4.5)

SQW ASV

BGD

[96]

Bi/ CAA

Ex situ/in situ

V (V)

2∙10–8

0.1 M acet. buff. (pH 5.5) + 50 μM CAA + 4 mM KBrO4

SQW CSV

Groundwater

[97]

Bi/ DMG

Ex situ/in situ

Co (II)

1.8∙10–11

0.0125 М PIPES   +   0.002 М HEPES   +   75 mgL−1 CTAB   +   2.4∙10–4 М DMG (рН 6.5)

DP CSV

+

Tea leaves, natural and drinking waters

[98, 99]

Bi/ CF

Ex situ/ in situ

Cr (VI)

2∙10–9

0.01 М PIPES   +   0.2 М KCl   +   0.1 mМ CF

SQW CSV

Tap water, soils

[100]

Bi/ТEА

Ex situ/in situ

Fe (III)

7.7∙10–9

0.1 М NaOH   +   0.01 М ТEА   +   5∙10–3 М KBrO3

DP CSV

+

Standard sample of river water

[101]

Bi/ DTPA

Ex situ/in situ

Cr (VI)

3∙10–10

0.1 М NaAc (pH 4.5) + 0.25 М KNO3 + 1∙10–6 М DTPA

SQW CSV

+

River waters

[102]

Bi/ DMG

Ex situ/in situ

Co (II), Ni (II)

1.2∙10–9 (Co); 1.7∙10–9 (Ni)

0.2 М аmm. buff. (pH 9.2) + 1∙10–4 М DMG

SQW ASV

Ore, river water

[103]

Bi/ CAA

Ex situ/in situ

Mo (VI)

2∙10–9

0.05 М аcet. buff. (pH 5.5) + 5∙10–5 М CAA

SQW CSV

Sea water

[104]

Bi/cupferron

Ex situ/in situ

U (VI)

4∙10–10

0.01 M PIPES + 0.05 M KCl + 0.1 mM cupferron

SQW CSV

Sea water

[105]

Pb-Cu/DMG + NO2

In situ

Co (II)

1∙10–11

0.2 М (NH4)2SO4 + NH4OH +  0.5 M NaNO2 + 2∙10–3 М DMG + 5∙10–5 М Cu (II) + 1.5∙10–5 М Pb (II) (pH 8.5)

SQW CSV

SS, water

[106]

8HXQ

In situ

Sn (II)

2∙10–6

0.1 М NaAc (рН 6) + 8HXQ

SQW

+

Tooth paste, pharmaceutical preparations

[107]

HEPES

In situ

U (VI)

1∙10–9

0.02 М HClO4 (pH 4) + 2∙10–5 М HEPES

SQW CSV

+

Food stuffs, fertilizers, cement

[108]

ТМАC

In situ

Al (III), Mg (II)

5∙10–11 (Al); 4∙10–10 (Mg)

0.01 М KNO3 (pH 5.0) + 0.02 М ТМАC

SQW ASV

+

Food stuffs, fertilizers, cement

[109]

DFO

In situ

Al (III)

2∙10–7

0.05 М amm. buff. (рН 8.3–8.9) + (10–4–10–5) М DFO, THMP, DHP

DP ASV

Natural waters, biological liquids

[110]

DDTACD

Ex situ

Au (III)

8.3∙10–8

0.1 М NaCl + 0.01 М NaAc (pH 4)

SQW CSV

Geological samples

[111]

8MQN

Ex situ

Ag (I)

2.7∙10–11

0.1 М NaAc (рН 4.3) (accumulation), 0.1 М HNO3 + 0.05 М KBr (sweep)

LS ASV

Sea waters, rice

[112]

PAN

Ex situ

Сd (II)

5∙10–10

0.1 М NaH2PO4

LS ASV

Model solution

[113]

ARS

In situ

Cu (II)

1∙10–6

0.1 М H3PO4 + 0.1 М ARS

CV

BGD

[114]

Alizarin

Ex situ

Cu (II)

1∙10–4

0.5 М Na2SO4 (pH 4)

CV

BGD

[115]

BPD

In situ

Fe (II)

10–7

0.025 М KCl   +   1 gL−1 BPD

DP АVA

+

Soils

[116]

Dithizone

Ex situ

Hg (II)

5∙10–10

0.1 M KJ (pH 2)

LS ASV

Sea water

[117]

MAA

Ex situ

Hg (II)

4∙10–2

0.1 М HNO3

LS ASV

BGD

[118]

BPD

Ex situ

Pb (II)

1∙10–7

0.1 М NaAc (рН 4.5)

LS ASV

+

Model solutions

[119]

Humic acids

Ex situ

Fe (II), Cu (II), Ni (II)

2.0∙10–6 (Fe); 6.0∙10–7 (Cu); 6.0∙10–6 (Ni)

0.1 М KHPh (Fe, Cu); 0.1 М Na2SO4 (Ni)

SQW ASV

BGD

[120]

PCC

Ex situ

Ce (III)

2.0∙10–10

0.1 М NaOH

DP ASV

+

SS, hair

[121]

KF-222

Ex situ

Hg (II)

10–12

0.01 М NaAc (рН 4) + 0.1 М NaClO4

SQW ASV

Sea and waste waters, saliva

[122, 123]

CA

Ex situ

Hg (II)

2.5∙10–8

0.1 М H2SO4 + 0.01 М NaCl

SQW ASV

+

Natural waters

[124]

TCA

Ex situ

Cu (II)

2∙10–9

0.1 M B-R (pH 4.5)

DP ASV

+

Natural waters

[125]

TCA

Ex situ

Pb (II), Cd (II)

2∙10–8 (Cd); 8∙10–9 (Pb)

0.1 M acet. buff.

DP ASV

+

Natural waters

[126]

Nafion

Ex situ

Pb (II)

5∙10–9

0.1 М NaCl   +   0.05 М HCl

SQW ASV

Standard sample TMDA-52.2

[127]

Nafion

Ex situ

Sn (IV)

8∙10–10

0.01 М NaCl   +   HCl (pH 1.9)

LS CSV

Hair

[128]

Nafion

Ex situ

CH3Hg+

4.5∙10–8

0.01 М HClO4

SQW АV SQW DDV

+

BGD

[129]

Nafion

Ex situ

Fe (III), Fe (II)

10–9

(0.03–0.3) М HCl

SQW DDV

+

Interstitial waters

[130, 131]

Nafion /Hg

Ex situ

Cd (II)

1∙10–10

0.01 М NaAc

LS ASV

+

Blood

[132]

Nafion /Hg

Ex situ

Cu (II)

1.6∙10–6

0.1 М HNO3

SQW ASV

+

Beer

[133]

Nafion /Hg

Ex situ

Cu (II)

1.5∙10–8

0.1 М acet. buff. (pH 3.5)

DP ASV

+

Estuarial water

[134]

Nafion /Hg

Ex situ

Pb (II)

2∙10–7

0.1 М TRIS   +   0.6 М NaCl

SQW ASV

+

BGD

[135]

Nafion /Hg

Ex situ

Pb (II)

1∙10–7

0.02 М KNO3 (pH 5)

DP ASV

+

Model solution

[136]

Nafion /Hg

Ex situ/in situ

Pb (II)

1.2∙10–9

0.1 М NaAc (pH 4.6) + 85.7 mМ Hg (II)

SQW ASV

Simulated saliva

[137]

Nafion /Hg

Ex situ/in situ

Cd (II), Pb (II)

2∙10–9 М (Cd); 4∙10–9 М (Pb)

0.1 М KNO3 + 2 mМ HNO3 + 1∙10–4 М Hg (II)

SQW ASV

Waste water

[138]

Nafion /Hg

Ex situ

Pb (II), Cd (II)

3∙10–11 (Pb), 5∙10–11 (Cd)

0.1 М NaAc (pH 4.6)

SQW ASV

BGD

[139, 140]

Nafion /Hg

Ex situ

Pb (II), Cd (II)

9∙10–9 (Cd), 1∙10–7 (Pb)

0.12 М NaAc (pH 7.7)

SQW ASV

+

Sweet water

[141]

Nafion /Hg

Ex situ

Pb (II), Cu (II)

2∙10–8 (Pb), 6∙10–8 (Cu)

0.1 М KNO3 + 5 mМ HNO3

DP ASV

Service waters

[142]

Nafion /Hg

Ex situ

Cd (II), Pb (II)

4.5∙10–8(Cd); 4.8∙10–8 (Pb)

0.1 М NaAc (рН 4.5) + 9.41∙10–5 M FA

DP ASV SQW ASV

+

Model solutions of fulvic acids

[143]

Nafion /Hg

Ex situ

Cu (II), Pb (II), Cd (II)

1.6∙10–8 (Cu); 4.8∙10–9 (Pb); 8.9∙10–9 (Cd)

0.1 М NaAc (pH 4.5)

DP ASV, LS CSV

+

Food stuffs

[144]

Nafion /Hg –Cu

Ex situ

Pb (II)

4∙10–10

5 mМ HNO3 + 0.1 М KNO3

SQW ASV

+

Natural waters

[145]

Nafion /Bi

Ex situ/in situ

Pb (II), Cd (II)

4.8∙10–8

0.1 М NaAc (рН 4.5) + 400 μgL−1 Bi (III)

SQW ASV

Model solutions of SAS

[146]

Nafion /Bi

Ex situ/in situ or ex situ

Pb (II), Cd (II), Zn (II)

5∙10–10 (Pb); 9∙10–10 (Cd); 6∙10–9 (Zn)

0.1 M acet. buff.

SQW ASV

Tap water, urine, wine

[147]

Nafion + HgCl2

Ex situ

Pb (II), Cu (II)

5.8∙10–9 (Pb); 5∙10–8 (Cu)

0.1 M citric acid   +   0.03 M Na2HPO4 + 0.1 M KCl

LS ASV

Sea water

[148]

Nafion + KF-222 (1); Nafion + terpene (2)

Ex situ

Hg (II) (1), Fe (II) (2)

3.8∙10–9 (Hg); 2.5∙10–7 Fe (II)

0.025 М H2SO4 + 0.1 М NaCl (Hg); 0.1 М sulphate buffer (pH 3) (Fe)

SQW ASV SQW CSV

BGD

[149]

Nafion + Na-DDC (1); Nafion + 18C6 (2)

Ex situ

Pb (II), Cu (II), Сd (II), Hg (II)

1∙10–8 (Hg) (1), 1∙10–9 (Cu, Pb, Cd) (2),

0.1 М KNO3 (pH 2.0) (1); 0.1 М NaAc (2)

DP ASV

+

BGD

[150]

Nafion + tobramycin

Ex situ

Cu (II)

5∙10–10

Acet. buff. (pH 4.6)

DP ASV

Water samples, analytical salts

[151]

Nafion + BPD/Hg

Ex situ

Pb (II)

5∙10–10

0.07 М phosphate buffer (pH 4)

SQW ASV

Drinking water

[152]

Nafion + DAB /Hg

Ex situ

Se (IV)

6∙10–9

0.1 М NaClO4

SQW CSV

Natural waters

[153]

Nafion + 8HXQ /Hg

Ex situ

Te (IV)

1.6∙10–9

0.1 М NaClO4 (pH 2.5) + 0.01 М EDТА

SQW CSV

+

BGD

[154]

Nafion + DMG; BPD/Hg

Ex situ

Pb (II), Cu (II)

6.3∙10–8 (Cu); 1∙10–8 (Pb)

NH3/NH4Cl buffer (pH 9)

SQW ASV

Waters, urine

[155]

Nontronite /nafion /Hg

Ex situ

Cu (II)

10–7

0.01 М KNO3

SQW ASV

+

Natural waters

[156]

Tosflex

Ex situ

Cu (II)

9.4∙10–6

0.5 М NaCl   +   0.1 М NaAc (pH 5)

LS ASV

+

BGD

[157]

Tosflex

Ex situ

Hg (II)

2∙10–11

0.5 М NaCl   +   0.01 М HCl

DP ASV

+

Natural waters

[158, 159]

Tosflex /Hg

Ex situ

Bi (III)

3∙10–9

0.5 М KCl (pH 1.4)

SQW ASV

+

Waters

[160]

Tosflex /Hg

Ex situ

Tl (III)

5∙10–10

0.5 М KCl (pH 5.6)

SQW ASV

Model solutions

[161]

Tosflex /Hg

Ex situ

Zn (II)

1.5∙10–9

0.02 М H2SO4

SQW ASV

+

Model solutions

[162]

Tosflex + DAB /Hg

Ex situ

Se (IV)

1.3∙10–9

0.1 М KCl

SQW CSV

+

Sea and sweet natural waters

[163]

Tosflex + 8HXQ /Hg

Ex situ

Te (IV)

1.6∙10–9

0.1 М KCl (рН 3)

SQW CSV

+

Model solutions

[164]

PPG

Ex situ

Sb (III)

4.1∙10–10

0.04 М NaAc (рН 5.5) (accumulation); 1.0 М HCl (sweep)

DP ASV

+

Sea water, hair

[165]

PPD

Ex situ

Hg (II)

1∙10–10

0.5 М NaCl   +   0.01 М HCl

DP ASV

+

Interstitial waters

[166]

PP + PDDT

Ex situ

Cu (II)

1∙10–6

0.1 М NaAc

CV

Model solution

[167]

PMR

Ex situ

Hg (II)

4.4∙10–11

B-R buff. (pH 2.56)

LS ASV

Like water

[168]

CA

Ex situ

Pb (II), Cd (II)

2∙10–7

0.1 М NaAc

DP ASV

+

Model solution

[169, 170]

Nontronite/CA

Ex situ

Cu (II)

2.7∙10–8

amm. buff. (pH 10)

SQW ASV

Natural waters

[171]

OxPPh or Morin hydrate

Ex situ

Sn (II, IV), Sb (III)

5∙10–8 (Sn); 5∙10–8 (Sb)

0.5 М HCl   +   1.5 М NaCl

LS АSV

Natural waters

[172, 173]

polymer – EDTA

Ex situ

Pb (II), Cu (II), Hg (II)

6∙10–10 (Pb); 2∙10–10 (Cu); 5∙10–10 (Hg)

0.2 М NaAc

SQW ASV

+

Tap water, SS of rine

[174]

PDTT – EDTA

Ex situ

Ni (II), Zn (II), Cd (II), Hg (II), Cu (II), Pb (II), Co (II), Fe (II)

6.0∙10–8 (Ni); 9.0∙10–8 (Zn); 6.6∙10–8 (Cd); 0.3∙10–9 (Hg); 0.1∙10–9 (Cu); 0.4∙10–9 (Pb); 5.0∙10–8 (Co); 8.0∙10–8 (Fe)

0.2 М NaAc (рН 2.1; 2.5; 3.0; 4.1; 4.5; 4.9; 5.3; 5.7 for Ni, Zn, Cd, Hg, Cu, Pb, Co, Fe)

SQW ASV

BGD

[175]

PVP + KF222

Ex situ

Hg (II)

1∙10–9

0.025 М H2SO4 + 0.1 М NaCl

DP ASV

BGD

[176]

PVP /Hg

Ex situ

Pb (II)

1.5∙10–9

0.025 М H2SO4

SQW ASV

Subsoil waters

[177]

PVP /Hg

Ex situ

Tl (III)

5∙10–10

0.01 М HNO3 + 0.1 М KCl

SQW ASV

Subsoil waters

[178]

CА/Hg

Ex situ

Pb (II)

1.9∙10–7

0.1 М NaAc (рН 4.6)

DP ASV

+

Model solutions

[179]

PP /Hg

Ex situ

Cd (II), Pb (II)

1∙10–6

0.1 М NaAc

SQW ASV

+

BGD

[180]

PESA /Hg

Ex situ/in situ

Cd (II), Pb (II)

3.7∙10–9 (Cd); 3.8∙10–9 (Pb)

0.1 М KNO3 + 5 mМ HNO3 + 0.1 mМ Hg (II)

SQW ASV

Model solutions of SAS

[181]

PSSF /Hg; Hg /PLL-PSS

Ex situ

Pb (II), Cd (II), Cu (II)

1.2∙10–10 (Pb); 9∙10–10 (Cu); 6.5∙10–10 (Cd)

0.5 М NaCl

SQW ASV

Natural waters

[182, 183, 184]

PSSF + chabazite /Hg

Ex situ

Zn (II)

5∙10–7

0.01 М KNO3

SQW ASV

+

Model solutions

[185]

leaven

In situ

Au (III)

6.0∙10–8

0.1 М HCl   +   0.1 М HNO3

LS CSV

+

BGD

[186]

CNT

Ex situ

Hg (II)

2∙10–10

0.1 М HCl   +   0.02 М KJ

DP ASV

Lake water

[187]

CNT

Ex situ

Cd (II), Pb (II)

6∙10–9 (Cd); 4∙10–9 (Pb)

0.1 М NaAc   +   0.02 М KJ

DP ASV

Lake water

[188]

CNT + Nafion

Ex situ

Cd (II)

4∙10–9

Acet. buff. (pH 5)

DP ASV

Water samples

[189

GCM-Au/MWCNT

Ex situ

Tl (I)

2∙10−6

10 mM HNO3   +   10 mM NaCl

LS ASV

BGD

[190]

aCAA Chloranilic acid, 8HXQ 8-hydroxyquinoline, DMG dimethylglyoxime, RSH ω-mercaptocarboxylic acid, EDA ethylenediamine, 18C6 18-crown-6-ether, CHD 1,2-cyclohexanedione dioxime, PVP poly(4-vinylpyridine), CAA chloranilic acid, CF cupferron, ТEА triethanolamine, DTPA diethylene triamine pentaacetic acid, ТМАC tetramethylammonium chloride, DFO diferrioxamine, DDTACD 8,9,17,18-dibenzo-1,7-dioxo-10,13,16-triazacyclooctadecane, 8MQN 8-mercaptoquinoline, PAN polyacrylonitrile, ARS alizarin red S, BPD 2,2′-bipyridyl, PCC pyrocatechol, KF-222 Cryptofix-222, MAA mercaptoacetic acid, CA calix[6]arene, TCA p-tert-butylthiacalix[4]arene, ACA p-allylcalix[4]arene, PES poly(estersulfonate), DDC diethyldithiocarbamate (e.g., Na, Zn), DAB 3,3′-diaminobenzidine, PPG polypyragollol, HEPES N-(2-hydroxyethyl)piperazine-N′-3-propane sulfonic acid, PPD PP derivative, PP polypyrrole, PDDT (pyridyl)-5,6-diphenyl-4,4′-disulfonate-1,2,4-triazine, PMR polymethil-red. CA cellulose acetate, OxPPh oxidized polyphenol, EDTA ethylenediaminetetraacetic acid, PDTT poly-3′,4’′-diamino-2,2′,5′,2″-terthiophen, PESA poly(ester sulfonic) acid, PSSF poly(styrene sulfonate), PLL-PSS poly-l-lysine-poly(sodium 4-styrenesulfonate), CNT carbon nanotubes

bAmm.buff. Ammonium buffer, asc.ac. ascorbic acid, TBAP tetrabutylammonium perchlorate, SDS sodium dodecyl sulfate, PIPES piperazine-N,N′-bis(2-ethane sulfonic acid), CTAB cetyl trimethylammonium bromide, THMP 3-hydroxy-2-methyl-4H-pyran-4-one, DHP 2,3-dihydroxypyridine, KHPh potassium hydrophthalate, acet.buff. acetate buffer, TRIS tris(hydroxymethyl)methylamine, FA fulvic acids, TEA-Br tetraethylammonium bromide, B-R buff. Britton-Robinson buffer

cLS Linear sweep, ASV anodic stripping voltammetry, SQW square wave, DP differential pulse, AC alternating current, CSV cathodic stripping voltammetry, CV cyclic voltammetry, AVA anodic voltammetry, DDV double differential voltammetry, MSWV multiple square wave voltammetry

d+ After, without oxygen removal

eBGD Supporting electrolyte, SS standard sample, SAS surface active substances

The GCE modifiers in common use are metals (mercury [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], gold [81, 82, 83, 84, 85], cadmium [87], copper [88], lead [89], platinum [90], bismuth [91, 92, 93, 94, 95, 96]) and facilitating the precipitation of amalgam-forming and electropositive elements. Organic substances (OS) [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121], macrocyclic compounds [122, 123, 124, 125, 126], polymers [127, 128, 129, 130, 131, 157, 158, 159, 165, 166, 169, 170, 171, 172, 173, 174, 175], bioactive compounds [186], and nanotubes [187, 188, 189, 190] can also serve as GCE modifiers. Different combinations of the modifiers—a metal and OS [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106], a polymer and a metal [86, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 160, 161, 162, 177, 178, 179, 180, 181, 182, 183, 184], a polymer and OS [149, 150, 151, 167, 174, 175, 176], a polymer, OS, and a metal [152, 153, 154, 155, 163, 164, 185]—are used for the GCE surface modification. Water-soluble OS are generally immobilized in situ onto the surface of a pre-activated electrode [70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 114, 116], while low-soluble OS are immobilized ex situ [72, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 149, 150, 151, 152, 153, 154, 155, 185]. OS are localized on either the GCE surface [107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126] or the first modifying layer of mercury [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80], bismuth [97, 98, 99, 100, 101, 102, 103, 104, 105] or lead–copper [106].

For a more profound immobilization of the compounds, GCE is pre-polarized at a constant potential of (1.2 ÷ 2.0) V [36, 39, 41] or undergoes multiple (up to 100) polarization cycles between 0 and +1.2 V in 0.1 M NaOH [40]. Some investigators think that, in this case, new functional groups appear on the surface [39, 40, 41], whereas others are inclined to consider the formation of an oxidized GC film [36]. Still, they are agreed that the anodic polarization radically changes the structure and the composition of the electrode surface, making it possible to fix the modifier or the measured ions on the surface through the ion exchange, the covalent bonding or the electrostatic interaction.

Polymer-coated electrodes constitute a big group of GCE [127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183]. Unique properties of the polymer surface and applications of current-conducting polymers are described in Ivaska [192]. To make a polymer film in the form of a “spin coat”, several droplets of the liquid polymer are placed in the working zone, and the electrode is spindled until the polymer film is uniform in thickness. One more method for making of a polymer film (polyaniline, polypyrogallol, polycatechol, etc.) consists in its oxidative electro-polymerization growing from a monomer solution. It was proposed to make superfine (3,000 Å) polymer films on GCE by an original method of “electrostatic spraying” [169, 170], which involves preparation of a “spray liquid” under the action of a strong electric field. For example, to apply a cellulose acetate film, a strong electric field (the voltage of 14 kV) was applied to a dielectric mixture, which was composed of cellulose acetate, acetone, and magnesium perchlorate (a porophore). The liquid was charged and was broken into tiny droplets so that a thin, uniform, and homogeneous film covered the electrode. The polymer electrode films generally have a cross-linked structure and act as molecular sieves separating coarse particles, e.g., protein molecules. Moreover, they can function as ion exchangers. For example, nafion and tosflex (fluocarbon polymers) act as a cation exchanger and an anion exchanger, respectively. Some investigators implanted analytical reagents into the structure of current-conducting polymers [148, 149, 150, 151, 152, 153, 154, 162, 163, 178] providing the enhanced selectivity of the polymer film. The high selectivity to metal ions was achieved [174, 175] because polymers with covalently grafted ethylenediaminetetraacetic acid (EDTA) groups were synthesized on GCE. The response selectivity is efficiently improved by the “guest–host” interaction. Properties of crown ethers acting as host molecules for ions of guest metals were used [77, 112, 108, 109, 148, 149, 176] for measurements of Au (III), Hg (II), Cu (II), Pb (II), and Cd (II) ions on electrodes modified by crown-ether adsorption and a nafion film with immobilized macrocycles.

One more method for improvement of the voltammetric selectivity is the use of electrodes with monolayers of organic molecules self-organized on the electrode surface [72, 193, 194]. For example, ω-carboxylic acids with hydrocarbon chains of different lengths can arrange themselves to the Langmuir palisade on gold or mercury surfaces. While possessing discrimination properties, functionalized layers can change the transport of depolarizer particles to the electrode surface not only due to different charges, but also due to the hydrophobic effect.

The pioneering studies concerned with the use of nanotube-modified GCE include the research performed by a group of Taiwan investigators [187, 188]. Such electrodes provided sufficiently low detection limits for elements. However, the introduction of these electrodes to the analytical practice requires solving the problem of structural ordering in the nanotube layer which influences the reproducibility of measurement results.

A serious problem in the use of GCE is the degradation of the modified surface showing up as the displacement of the current peak potential of the determined element, the distortion of the peak shape, and the emergence of additional peaks [195]. To make the GCE surface reproducible, it is prepared and cleaned by a great variety of methods such as mechanical polishing [108], treatment with reagents [76], electrochemical treatment by polarization at high anode potentials [36, 186], and exposure to microwaves or ultrasound [29, 40, 131]. Mechanical polishing of the surface with abrasive diamond or Al2O3 powders or special polish cloths is in most common use. This surface treatment method is not only laborious and time-consuming, but what is the worst does not guarantee that the surface properties will be reproducible. This problem was attacked by development of automatic devices for cleaning of the solid electrode surface [116], but they have been used on a narrow scale because of their complexity and high cost. The original approach has been used [190] to modify GC with glassy carbon spheres covered by nanoparticles of precious metals and multiwalled nanotubes.

Carbon-paste electrodes

In 1958, Adams described a new type of the carbon-paste electrode (CPE) for voltammetry. This electrode was conceived because despite good performance capabilities of mercury electrodes with respect to the adsorptive concentration of inorganic ions [196, 197, 198], they have some limitations at positive potential range, while many solid electrodes, which are operable over a wide interval of potentials, cannot selectively sorb the required component of the system. Adams’ idea was not overlooked by other investigators, and in 1964, Kuwana et al. performed research making the first contribution to the advancement of chemically modified carbon-paste electrodes, which are described in the reviews [199, 200, 201].

CPE is made of a homogenized paste of fine-dyspersated coal and a water-immiscible binding liquid. Paraffin, petrolatum, or polychlorotrifluoroethylene oils, silicon fluid, dioctylphthalate, α-bromnaphthalene, tricresyl phosphate, and other materials can be used as the binding liquid. Two types of CPE pastes are available: dry (0.3–0.5 ml of the binding liquid per 1 g of the carbon powder) and wet (0.5–0.9 ml of the binding liquid per 1 g of the carbon powder) pastes. CPE can bear a high residual current caused by oxygen admixed to the paste with carbon powder particles. The residual current can be eliminated if the preheated carbon powder is mixed with wax, paraffin, or petrolatum oil in the nitrogen atmosphere or a lipophilic paste fluid (tricresyl phosphate) is added. The detection limit (LOD) of many inorganic and organic substances on CPE generally is 1·10−9 M. LOD is frequently decreased by activation of the electrode at high negative or positive potentials. The anode activation of the electrode is most efficient because interfering organic substances can be removed from the surface in this case. Sometimes the electrode is “shaken up” through the cyclic polarization between large negative and positive potentials.

When compared to other carbon-containing electrodes, CPE has a well-developed surface with a high adsorptivity of various substances. This property of CPE is used successfully in voltammetry for the modification and the adsorptive accumulation of substances to be measured. A modifier can be immobilized on CPE by several means including sorption, covalent binding, dissolution of a lipophilic modifier in the paste fluid, and direct mixing with the carbon paste. Direct mixing of a modifier with the paste is used most frequently. This modification procedure is very simple: a modifier is added to the paste in the dry form or diluted in a small amount of an organic solvent making the paste more homogeneous. Other methods of the modifier immobilization are used least often. The depolarizer is concentrated on the modified CPE surface through adsorption, chemical, or electrostatic interaction of the element to be measured and the modifier. CPE is modified by various organic substances such as aromatic oxycarboxylic acids, aromatic amine and diimine compounds, azocompounds, dyes, thiocompounds, triazines, and quinolines. In addition to the main hydrocarbon chain, molecules of these organic compounds include nitrogen, sulfur, and oxygen atoms, aromatic and aliphatic cycles containing unbound π-electrons, which can interact, on one hand, with the electrode surface and, on the other hand, with the analyte ensuring a high surface adsorption and strong binding to the substance to be determined.

Every so often, the analyte is concentrated on modified CPE with the circuit open using extraction, sorption, ion exchange, and formation of ion pairs. The measurement stage can be accomplished in another electrolyte. As the electrolyte is replaced, it is possible to optimize the measurement parameters (pH, the ionic force, and the potential) and eliminate the interference of other components of the test solution. Dependences of the current peak of the element to be determined on the concentration and the accumulation time on CPE are flattened-out curves because all functional groups of the modifier are saturated.

Table 2 gives examples of specific applications of modified CPE for the voltammetric determination of metal ions [202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312]. Sometimes CPE is modified by films of metals and their oxides [202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216]. The electrode is modified most frequently by crown compounds [216, 217, 218, 219, 220, 221], calixarenes [222], cyclodextrins [223, 224, 225], nonfunctionalized and functionalized silica [226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243], clay minerals (vermiculite and montmorillonite) [244, 245, 246, 247, 248, 249, 250, 251, 252, 253], ion exchangers in the form of artificial resins [254, 255, 256, 257, 258258, 259, 260, 261, 262], natural humic acids and soils [259, 260, 261, 262, 263], organic [264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310], and bioactivecompounds [311, 312].
Table 2

Моdified carbon paste electrodes

Modifiera

Manner

Analyte

Detection limit (М)

Supporting electrolyte

Sweep modeb

Purge

Sample

Reference

Aunano

Ex situ

As (III)

3–5∙10–9

0.1 М HNO3

SQW ASV

BGD, mineral water

[202, 203]

Au

Ex situ

As (III, V)

4∙10–8 As (III); 7∙10–9As (V)

1 М HClO4 + 0.2 M HCl   +   5∙10–6 M Au (III)

LS ASV

+

River water

[204]

Auadatoms

In situ

Au (III)

2∙10–6

0.2 М H2SO4

CVА

Model mixtures

[205]

Au

In situ

Hg (II)

2.5∙10–10

0.1 М HNO3 + 0.02 М KCl + 5∙10–6 М Au (III)

DP АSV

Drinking water

[206]

Bi

In situ

Zn (II), Pb (II), Cd (II)

1.5∙10–8 (Pb)

0.1 М NaAc (рH 4.5) + 0.5 mgL−1 Bi (III)

SQW ASV

Model solutions

[207]

Bi

Ex situ

Cd (II), Pb (II)

9∙10–9 (Cd); 4∙10–9 (Pb)

0.2 M acet. buff. (pH 4.25)

SQW ASV or DP ASV

Tap, sea waters

[208, 209]

Bi2O3 or Bi

Ex situ

Zn (II), Pb (II), Cd (II)

4.4∙10–8 (Cd); 2.4∙10–8 (Pb)

0.1 M NaAc (pH 4.5)

DP ASV

Waters

[210, 211]

Hg

In situ

Zn (II)

1.3∙10–7

0.1–0.2 М amm. buff. + 2∙10–5 М Hg(NO3)2

DP АSV

+

Drinking water

[212]

Hg

Ex situ

Cu (II), Pb (II), Cd (II)

5∙10–9

Ammonium acetate buff. (pH 4.5)

DP ASV

Fish muscles and water samples

[213]

Wax + Hg oxalate

Ex situ

Cu (II), Pb (II), Cd (II), Zn (II)

3∙10–9 (Cd)

0.1 M KCl or acet. buff. (pH 3.8)

DP ASV or LS АSV

+

Medicinal plants, tablets

[214]

Pt nanoparticles

Ex situ

Cu (II)

3.9∙10–9

0.1 M acet. buff. (pH 5.9)

LS ASV

Urine

[215]

DB18C6 (1), CuO (2)

Еx situ

Pb (II)

2∙10–9 (1); 2.5∙10–9 (2)

0.1 М NaCl   +   10–3 М 18C6 (1); 0.1 М NaCl (2)

DP ASV LS АSV

+

Soil, snow, air, waters

[216]

DB18C6

Еx situ

Cu (II), Pb (II)

9.5∙10–9 (Cu); 2∙10–9 (Pb)

1 М NaAc (pH 5–6)

LS АSV, SQW ASV

+

Waste waters

[217]

Aza-crown compound

Ex situ

Ni (II), Co (II)

4∙10–8 (Ni); 1.2∙10–7 (Co)

0.1 М NaCl (accumulation); 0.1 М KOH (sweep)

DP ASV (Co + Ni); DP CSV (Ni)

BGD

[218]

DB18C6 and its analogs

Ex situ

Au (III), Pt (IV), Pd (II)

8∙10–9 (Au); 3∙10–7 (Pt); 2∙10–8 (Pd)

0.1 М HCl

DP ASV

SS of ore

[219]

B15C5

Ex situ

Cu (II)

8∙10–7

Water-ethanol (40%) solutions

DP ASV

Strong drinks

[220]

Thiacrown compounds

Ex situ

Ag (I)

5∙10–7

NaClO4 (accumulation); 0.1 М NaAc (sweep)

AVA

BGD

[221]

calix[4]arene

Ex situ

Cu (II)

2∙10–8

Acidified sample (accumulation); 0.1 М HCl (sweep)

DP АSV

Tap water

[222]

a-CD & b-CD

Ex situ

Pb (II), Cd (II), Hg (II)

6.3∙10–7 (Pb); 2.0∙10–6 (Cd); 5∙10–8 (Hg)

1 М HClO4

АSV

BGD

[223, 224, 225]

Zeolite

Ex situ

Cu (II)

1.5∙10–8

0.05 M NaNO3

DP ASV

+

Dried tomayo, bakosel capsule

[226]

Silica

Еx situ

Cu (II)

2∙10–9

0.1 М NH4OH

LS ASV, SQW ASV

Subsoil, sea waters

[227, 228, 229]

Silica

Еx situ

Hg (II)

2∙10–9

Solution pH 4–7

SQW ASV

Real Samples

[230]

Silicas mоdified with

amides

Ex situ

Сu (II)

3∙10–9

0.1 М HNO3

DP ASV

Tap water

[231]

AMT

Ex situ

Hg (II)

5∙10–10

Sample (pH 2) (accumulation); 0.05 M KNO3 (sweep)

DP ASV

Natural waters

[232]

AMT (1); AMT/DMG (2)

Ex situ/in situ

Cu (II); Ni (II)

3.1∙10–8 (Cu); 2∙10–9 (Ni)

Ethanolic solution (accumulation); 0.1 M NH4Cl + 2.5∙10–3 М DMG (pH 9 for Ni)

DP ASV (1) DP CSV (2)

Ethanol fuel samples

[233, 234]

thio-groups

Еx situ

Сd (II)

1∙10–7

0.1 М phosphate buffer (рН 4)

DP ASV

+

Natural waters

[235]

Ex situ

Hg (II)

(2.5–6.5)∙10–8

HNO3 (pH 3.0) (accumulation); 0.01 М KNO3 (sweep)

DP ASV

BGD, natural water

[236, 237]

ex situ

Pb (II); Hg (II)

2.4∙10–9 (Pb); 1.5∙10–8 (Hg)

0.2 M HNO3

SQW ASV

BGD

[238]

Mercapto-groups

ex situ

Hg (II)

1∙10–6

рН 1(accumulation); 0.1 М HCl + 5% thiourea (sweep)

DP ASV

BGD

[239]

CPA

ex situ

U (VI)

1∙10–7

0.05 М CH3COONa (pH 5) (accumulation); 0.2 М HNO3 (sweep)

DP ASV

BGD

[240]

Ex situ

Сd (II); Pb (II); Cu (II)

8.9∙10–8 (Сd); 4.8∙10–8 (Pb); 1.6∙10–7 (Cu)

0.2 М HNO3

SQW ASV

BGD

[241]

Monsil

Ex situ

Hg (II); Ag (I); Pb (II); Cu (II)

4∙10–4 (Cu); 1∙10–3 (Ag, Hg); 5∙10–4 (Pb)

0.1 М NaClO4 + 1.5 М HClO4 (Hg, Ag, Pb); 0.1 М KCl + 1.0 М HCl (Cu)

CVА

+

BGD

[242]

ZrPH

Ex situ

Cd (II)

2∙10–9

0.05 M B-R buff. (pH 3) (accumulation); 0.1 M citrate buff. (pH 3.5) (sweep)

DP ASV

Artificial synthetic samples

[243]

Vermiculite

Еx situ

Cu (II)

5∙10–9

0.04 М B-R buff. (accumulation); 0.1 М NaNO3 + 0.02 М B-R buff. (sweep)

SQW ASV DP ASV

SRM 1643b (SS)

[244, 245]

Vermiculite

Ex situ

Cu (II); Ag (I)

1.9∙10–5 (Ag); 3.1∙10–6 (Cu)

0.01 М NaClO4

DP ASV

BGD

[246]

Vermiculite

Ex situ

Hg (II); Ag (I)

5.7∙10–8 (Hg); 6.3∙10–8 (Ag)

B-R buff. − pH 7 (Hg). pH 6 (Ag) (accumulation); B-R buff. (pH 5) + 0.05 М NaNO3 (sweep)

SQW ASV

Model solutions

[247]

Montmorillonite

Ex situ

Cu (II)

4∙10–8

NaAc (рН 5.5)

DP ASV

Model solutions

[248]

Montmorillonite

Ex situ

Bi (III)

1∙10–10

0.1 М HCl

DP ASV

Water, nikel metal samples

[249]

Montmorillonite

Ex situ

Hg (II)

1∙10–10

0.1 М tartaric acid

АSV

BGD

[250]

Еx situ

Hg (II)

5∙10–8

1 М KCl (pH 2)

DP ASV

Natural water

[251]

Ex situ

Fe (III)

3.6∙10–6

0.05 М KCl (pH 3.2)

DP CSV

BGD

[252]

TZT-HDTA-clay

Ex situ

Hg (II)

5∙10–10

Sample (pH 2–5) (accumulation); 0.05 М KNO3 (sweep)

DP ASV

Natural water

[253]

Dowex СGС241

Ex situ

Cu (II)

6.25∙10–5

0.1 М CH3COONa (pH 6.8)

DP CSV

+

Model solutions

[254]

Dowex 50W-8X

Еx situ

Cu (II)

1∙10–7

0.01 М KNO3 (accumulation); 0.1 М HCl (1 М KNO3) (sweep)

DP ASV

Waste waters

[255]

Amberlite IRS 718

Ex situ

Сd (II)

4.4∙10–8

1 mМ amm. buff. (accumulation); 0.1 М HCl (sweep)

LS АSV

River waters

[256]

Dyolite GT-73

Ex situ

Hg (II); CH3Hg+(I)

2.0∙10–8 (Hg); 9.4∙10–9 (CH3Hg+)

0.1 М HCl

CV

River waters

[257]

Ion-exchange resin

Еx situ

Cu (II); Pb (II); Hg (II)

2.4∙10–7 (Cu); 1.1∙10–7 (Pb); 5.0∙10–8 (Hg)

0.1 М KNO3 + 5∙10–3 М CH3COOH

DP ASV

Drinking water

[258]

Humic acids

Ex situ

Pd (II)

9.4∙10–8

0.1 М B-R buff. (pH  2.8) (accumulation); 1.0 М HCl (sweep)

LS АSV

Catalysts, precious metals

[259]

Humic acids

Ex situ

Pb (II); Cu (II); Hg (II)

4.8∙10–9 (Pb); 7.9∙10–9 (Cu); 8.0∙10–9 (Hg)

0.1 М KNO3

DP ASV

+

SRM 2670 (SS), urine

[260]

Humic acids + EDA

Ex situ

Au (III)

5∙10–8

0.35 М HNO3 (accumulation); 0.8 М HCl (sweep)

DP ASV

Ores

[261]

Humic acids/amides

Ex situ

Hg (I; II)

5∙10–8

0.1 М H2SO4 (accumulation); 0.5 М H2SO4 (sweep)

LS АSV

River waters

[262]

Soils

Ex situ

Cu (II)

1.2∙10–5

0.04 М B-R buff. + 0.1 М KNO3

DP ASV

+

Model solutions

[263]

HSF-Na

In situ

Ag (I)

2.5∙10–12

0.02 М NaAc   +   8.3∙10–5 М HSF-Na + 3 mМ EDТА

DP АSV

+

Tap water

[264]

TTCP

In situ

Ag (I)

1∙10–4

0.2 TBAP + 1∙10–3 TTCP

CV

BGD

[265]

BPG

In situ

Bi (III)

5∙10–10

0.3 М HCl + 2.0∙10–5 М BPG

ASV

+

Waters, hair

[266]

ARS

In situ

Cu (II)

1.6∙10–10

0.04 М B-R buff. (pH 4.56) + 3.6∙10–5 М АRS + 1.6∙10–3 М K2S2O8

SD CSV

Natural water, soil

[267]

ARS

In situ

Zr (IV)

1∙10–10

0.1 М acetic acid + 0.08 M KHP (рН 4.8) + 4∙10–6 М АRS

SD CSV

Ore samples

[268]

ARS + CTAB

In situ

Ce (IV)

6∙10–10

0.1 М HAc-NaAc + 0.2 M KHP (рН 5) + 2∙10–6 М АRS + 6∙10–5 М CTAB

SD CSV

Cast iron samples

[269]

CTAB

In situ

Ti (IV); V (V); Mo (VI)

2.0∙10–9 (Ti); 1.4∙10–9 (V); 4.2∙10–10 (Mo)

0.01 М oxalic acid + x mМ CTAB; x = 0.1 (Ti); 0.25 (V); 0.75 (Mo)

DP ASV

+

Rock, fuel, steel

[270, 271]

CTAB, Septonex

In situ

Os (IV); Pt (IV); Jr (IV)

5∙10–9 (Os); 1∙10–6 (Pt, Jr)

0.1 M acet. buff. + 0.15 M NaCl + 1∙10–5 M CTAB or Septonex (pH 4.5–6)

DP CSV

+

Industrial waste water

[272, 273]

EDТА

In situ

Fe (III)

2∙10–7

0.01 М KCl + 3∙10–4 М EDТА (pH 3.0)

DP CSV

+

River and tap waters

[274]

DAN

In situ

Se (IV)

1.3∙10–7

0.1 М KCl (рН 2) + 1∙10–4 М DAN (accumulation); 0.1 М HNO3 + 0.1 М KNO3 (sweep)

LS CSV

+

Natural, waste waters

[275]

Thioridazine

In situ

Pd (II)

4.7∙10–9

0.08 М HCl + 75 mgL−1 Thioridazine

DP АSV

+

Drinking water

[276]

Mo-GGPA, Mo-SA

In situ

Ge (III); Si (IV)

0.17∙10–8 (Ge); 0.09∙10–8 (Si)

0.1 М citrate buff. (рН 2.5) + Mo-GGPA (Мо-SA)

DP CSV

Semiconductors, refined waters

[277, 278, 279]

PEI

In situ

Ag (I); Hg (II); Cu (II); Pb (II); Cd (II)

0.9∙10–6 (Ag); 1.1∙10–6 (Hg, Cu); 8.0∙10–7 (Pb); 8.4∙10–7 (Cd)

0.1 М KCl (0.1 М KNO3) + 2% PEI (pH 3 for Pb, Cd and pH 2 for Cu)

LS АSV

Tap water

[280, 281, 282, 283]

IDA

Ex situ

Pb (II)

25.4 μg/kg

(pH 6) (accumulation); acet.-ammonium buff. (pH 3) (sweep)

DP ASV

SS of water

[284]

8HXQ

Ex situ

Tl (I)

4.9∙10–9

0.01 М B-R buff. (pH 7.96) (accumulation); 0.2 М аmm. buff. (pH 10) (sweep)

DP ASV

USEPA SS (WP 386)

[285]

2-methyl-8HXQ

Ex situ

Cu (II)

3.3∙10–9

0.05 М KSCN + 0.05 М HNO3 (accumulation); 0.05 М KSCN + B-R buff. (sweep)

DP ASV

+

SS

[286]

2.3- Dicyano-1.4- naphthoquinone

Ex situ

Ag (I)

5∙10–8

0.1 М KNO3

LS CSV

BGD

[287]

N-p-CPCHA

Ex situ

Cd (II)

5.5∙10–9

0.3 М NH4Cl (pH 5)

DP ASV

Mineral and drinking waters

[288]

N-p-CPCHA

Ex situ

Pb (II)

10–8 – 10–9

0.3 М CH3COONa (pH 6)

DP ASV

Drinking water

[289]

N-p-CPCHA

Ex situ

Co (II)

3.3∙10–7

0.2 М CH3COONa (pH 6)

DP ASV

Vitamin B12

[290]

Dithizone

Ex situ

Pb (II)

8∙10–8

Sample pH 12 (accumulation); 0.1 М HCl (sweep)

DP ASV

River water

[291]

Thiоhydrazone

Ex situ

Cu (II)

8∙10–9

0.1 М HCl

CV

River waters

[292]

BBTSC

Ex situ

Hg (II)

4∙10–8

0.01 М KNO3 (accumulation); 0.1 М HCl (sweep)

SQW ASV

River waters

[293]

FTHD

Ex situ

Cd (II)

5∙10–10

B-R buff. (pH 4)

DP ASV

Model solutions

[294]

DPCO

Ex situ

Hg (II)

5∙10–9

0.1 М KSCN (pH 2)

DP ASV

BGD

[295]

PTL derivative

Ex situ

Сu (I)

5∙10–9

0.5 М CH3COONa (pH 6)

DP ASV

СО NBS 1643

[296]

PTL + nafion

Ex situ

Fe (II)

3∙10–8

B-R buff. (pH 4.5)

DP CSV

Waters, SS of alloys

[297]

Diacetyldioxime

Ex situ

Pb (II); Cd (II)

1∙10–8 (Pb); 4∙10–8 (Cd)

0.1 М NaH2PO4

DP ASV

Natural waters

[298]

PAN

Ex situ

Mn (II; VII)

6.9∙10–9 Mn (II)

Phosphate-borate buffer (рН 8.7) (accumulation); аmm. buff. (pH 9.4) (sweep)

DP CSV

+

SS, sea water

[299]

TDPTA

Ex situ

Co (II)

5.0∙10–10

0.1 М NH4Cl (pH 4.95)

DP CSV

+

Drinking water

[300]

Thiourea derivative

Ex situ

Ag (I)

9.3∙10–8

1 М NaClO4 (pH 3.0)

LS АSV

BGD

[301]

Chelate P

Ex situ

Cu (II)

3∙10–8

Sample (accumulation); 1.0 М HNO3 (sweep)

DP ASV

River water

[302]

Cupron

Ex situ

Cu (II)

4.7∙10–9

amm. buff (pH 8.5) (accumulation); 1.0 М HNO3 (sweep)

LS АSV

Anodic mud, polluted water

[303]

Glyoxal derivative

Ex situ

Hg (II); Ag (I)

1∙10–9 (Hg); 1∙10–10 (Ag)

0.1 М NaAc (pH 5) (accumulation); 0.1 М KNO3 (sweep)

DP ASV

+

SRM 2670 (SS)

[304]

Phenylfluorone

Ex situ

Sb (III)

8.2∙10–9

0.5 М HCl

DP ASV

+

Hair, soil

[305]

PPDA

Ex situ

Pb (II)

1∙10–9

0.1 М KNO3 (accumulation); 0.1 М HCl (sweep)

DP ASV

Sea waters

[306]

Zn-DDC

Еx situ

Hg (II)

8∙10–10

0.1 М HClO4 (accumulation); 0.1 М KSCN + 0.01 М HClO4 (sweep)

DP ASV

+

USEPA SS (WP 386), urine

[307]

DMG + glycerol

Ex situ

Hg (II); Ni (II); Co (II); Pd (II)

10–8

Buffer (рН 4.8)

CSV

 

Rice, tea, hair

[308]

TBP

Ex situ

Zn (II); Ga (III)

2∙10–6

7 М HCl (accumulation); 0.5 М ethanolamine + 0.2 М ТEA-Br (sweep)

CVА

Model mixtures

[309]

Моrin

Ex situ

Zr (IV)

1∙10–8

2.2 М HCl

SD АSV

Ore

[310]

Lichen

Ex situ

Pb (II); Cu (II)

2∙10–5 (Pb)

0.02 М phosphate buffer (Pb); 0.02 М NaAc (Сu)

DP ASV

+

[311]

Lichen

Ex situ

Pb (II)

1∙10–8

NaAc with ionic force 0.01 (accumulation); NaAc with ionic force 0.7 (sweep)

DP ASV

Natural and drinking waters

[312]

For other abbreviations see Table 1.

aHSF-Na Sodium heptyl sulfonate, TTCP 2.5.8-trithio[9]-m-cyclophane, BPG brompyrogallol, DAN diaminonaphthalene, Mo-GGPA molybdenum-germanium heteropolyacid, Mo-SA molybdosilicic acid, PEI polyethyleneimine, IDA iminodiacetate, DB18C6 dibenzo-18-crown-6, B15C5 benzo-15-crown-5, α-CD and β-CD α- and β-cyclodextrins, CPA carbamoyl phosphonic acid, AMT 2-aminothiazole, ZrPH zirconium phosphate, KHP potassium biphthalate, TZT-HDTA-clay 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay, N-p-CPCHA chlorophenyl cinnamohydroxamic acid, BBTSC benzylbisthiosemicarbazone, FTHD 1-furoylthioureas, DPCO diphenylcarbazone, PTL 1,10-phenanthroline, TDPTA 2.4.6-tri(3.5-dimethylpyrazodyl)-1.3.5-triazine, PPDA poly-n-phenylenediamine, TBP tri-n-butylphosphate

bCVA Cathodic voltammetry, SD second derivative of voltammogram

Electrodes based on silica with self-organizing monolayers, for example, mesoporous silica modified by acetamide of the phosphonic acid provide accumulation and measurement of Cu, Pb, Cd, and U [240, 241]. CPE modified by biocatalysts, which are constituents of α- and β-cyclodextrins [223, 224, 225] or natural lichens [311, 312] are used for measurement of ions of heavy metals.

Solid depolarizers can be studied after their direct infusion to CPE, which has been called the carbon-paste electroactive electrode (CPEE). The CPEE methodology was recognized to be also suitable for insoluble electroactive compounds. The first studies of metals, metal oxides, chalcogenides, salts, and other compounds by CPEE methodology were reviewed by Brainina et al. [313]. Electrochemical transformations taking place on CPEE provide information about the electrochemical activity of solid compounds, their stoichiometry, the oxidized state of elements, the morphology (the size and the shape of particles, crystal defects), the catalytic activity, etc. The CPEE methodology significantly increased the scope of electrochemistry to poorly conducting and insoluble solids. CPEE is used to analyze lead sulfides, magnetite, oxides of silver, tin, copper, and iron, bromides of rare-earth elements, nickel-containing compounds and other solids, e.g., ceramics and classes [314, 315, 316, 317, 318]. A comprehensive review [319] is dedicated to the electrochemical analysis of solids.

Conclusion

Considering the above numerous examples of the electrochemical study and determination of various elements and compounds, it can be concluded that the modification of the surface of solid electrodes by a variety of methods and substances considerably extends the capabilities of voltammetry and ensures a highly sensitive and selective determination of a wide range of elements traces.

Notes

Acknowledgements

Financial support of Russian Foundation for Basic Research (project No. 07-03-96070-r_ural_a) and International Science and Technology Center (projects nos. 342, 2132 and 2897) is gratefully acknowledged.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Mаystrenkо VN, Gusakov VN, Sangalov EYU (1995) J Anal Chem 50:582Google Scholar
  2. 2.
    Vjaselev MR (1995) J Anal Chem 50:723Google Scholar
  3. 3.
    Budnikov GK (1996) J Anal Chem 51:374Google Scholar
  4. 4.
    Wang J, Tian B (1999) Anal Chim Acta 385:429Google Scholar
  5. 5.
    Brainina KHZ (2001) J Anal Chem 56:344Google Scholar
  6. 6.
    Bakker E (2004) Anal Chem 76:3285Google Scholar
  7. 7.
    Bakker E, Qin Y (2006) Anal Chem 78:3965Google Scholar
  8. 8.
    Vlasov YUG (1992) J Anal Chem 47:114Google Scholar
  9. 9.
    Zolotov YUA (1990) J Anal Chem 45:1255Google Scholar
  10. 10.
    Mjasoyedov BF, Davydov AV (1990) J Anal Chem 45:1259Google Scholar
  11. 11.
    Brainina KHZ (1995) Anal Chim Acta 305:146Google Scholar
  12. 12.
    Tarasevich MR, Bogdanovskaja VA, Gegeshidze LV (1999) J Anal Chem 54:966Google Scholar
  13. 13.
    Budnikov G, Murinov Yu, Маystrenkо V (1994) Voltammetry with modified and ultramicroelectrodes. Nauka, MoscowGoogle Scholar
  14. 14.
    Bakker E (2004) Anal Chem 76:3285Google Scholar
  15. 15.
    Bakker E, Telting-Diaz M (2002) Anal Chem 74:2781Google Scholar
  16. 16.
    Dong S, Wang Y (1989) Electroanalysis 1:99Google Scholar
  17. 17.
    Wang J (1991) Electroanalysis 3:255Google Scholar
  18. 18.
    Downard AJ (2000) Electroanalysis 12:1085Google Scholar
  19. 19.
    Walcarius A (2001) Electroanalysis 13:701Google Scholar
  20. 20.
    Navratilova Z, Kula P (2003) Electroanalysis 15:837Google Scholar
  21. 21.
    Zen JM, Kumar AS, Tsai DM (2003) Electroanalysis 15:1073Google Scholar
  22. 22.
    Yosypchuk B, Novothý L (2002) Electroanalysis 14:1733Google Scholar
  23. 23.
    Mikkelsen Ø, Schrøder KH (2003) Electroanalysis 15:679Google Scholar
  24. 24.
    McCreery RL (1999) Electrochemical properties of carbon surfaces. In: Wieckowski A (ed) Interfacial electrochemistry. Theory, experiment and applications. Dekker, New York, pp 631–647Google Scholar
  25. 25.
    Tarasevich MR (1984) Electrochemistry of carbon materials. Nauka, MoscowGoogle Scholar
  26. 26.
    Lisichkin GV (2003) Chemistry of graft surface compounds. Phismatlit, MoscowGoogle Scholar
  27. 27.
    Khanina RM, Tataurov VP, Brainina KHZ (1988) Zavodsk Lab 54/2:1Google Scholar
  28. 28.
    Kaplin AA, Pikula NP, Neyman E (1990) J Anal Chem 45:2086Google Scholar
  29. 29.
    Hardcastle JL, Murcott GG, Compton RG (2000) Electroanalysis 12:559Google Scholar
  30. 30.
    Kilimnik AB, Abakumova EA, Churikov AV (1998) Zavodsk Lab 64/4:12Google Scholar
  31. 31.
    Lowinsohn D, Bertotti M (2002) Electroanalysis 14:619Google Scholar
  32. 32.
    Viter IP, Kamenev AI (1997) J Anal Chem 52:1180Google Scholar
  33. 33.
    Fofonova TM, Bulantseva VN, Karbainov Y (1995) J Anal Chem 50:283Google Scholar
  34. 34.
    Tomcik P, Banks CE, Compton RG (2003) Electroanalysis 15:1661Google Scholar
  35. 35.
    Staden JF, Matoetoe M (1997) Fresenius J Anal Chem 357:624Google Scholar
  36. 36.
    Shiu K, Shi K (1998) Electroanalysis 10:959Google Scholar
  37. 37.
    Scholz F, Meyer S (1994) Naturwissenschaften 81:450FGoogle Scholar
  38. 38.
    Meyer S, Scholz F, Trittler R (1996) Fresenius J Anal Chem 356:247Google Scholar
  39. 39.
    Roitz JS, Bruland KW (1997) Anal Chim Acta 344:175Google Scholar
  40. 40.
    Zhang J, Di F (2003) Talanta 60:31Google Scholar
  41. 41.
    El-Maali NA, El-Hady DA (1998) Anal Chim Acta 370:239Google Scholar
  42. 42.
    Staden JF, Matoetoe MC (1998) Anal Chim Acta 376:325Google Scholar
  43. 43.
    Compton RG, Eclund JC, Marken F (1997) Electroanalysis 9:509Google Scholar
  44. 44.
    Nadezhina LS, Konstantinova SA, Filanovsky BK (1991) J Anal Chem 46:2442Google Scholar
  45. 45.
    Nadezhina LS, Lobnova OA, Pankina IA (1998) J Anal Chem 53:171Google Scholar
  46. 46.
    Zgadovа VA, Nemova VV, Nemov VA (1987) J Anal Chem 62:1644Google Scholar
  47. 47.
    Fischer E, Berg CMG (1999) Anal Chim Acta 385:273Google Scholar
  48. 48.
    Wu HP (1996) Anal Chem 68:1639Google Scholar
  49. 49.
    Nesterina EM, Bebeschko GI (2002) Zavodsk Lab 68:13Google Scholar
  50. 50.
    Sun YC, Tu YL, Mierzwa J (1998) Fresenius J Anal Chem 360:550Google Scholar
  51. 51.
    Petrov SI, Ivanova ZHV (2000) J Anal Chem 55:1224Google Scholar
  52. 52.
    Petrov SI, Kukhnikova LV, Ivanova ZHV (1998) Zavodsk Lab 64/9:13Google Scholar
  53. 53.
    Petrov SI, Kukhnikova LV, Ivanova ZHV (1998) Zavodsk Lab 64/6:13Google Scholar
  54. 54.
    Silva CL, Masini JC (2000) Fresenius J Anal Chem 367:284Google Scholar
  55. 55.
    Lee JD, Lo JM (1994) Anal Chim Acta 287:259Google Scholar
  56. 56.
    Economou A, Fielden PR (1996) Analyst 121:1903Google Scholar
  57. 57.
    Ashley K (1995) Electroanalysis 7:1189Google Scholar
  58. 58.
    Laar C, Reinke L, Simon J (1994) Fresenius J Anal Chem 349:692Google Scholar
  59. 59.
    Kozina SA (2003) J Anal Chem 58:1067Google Scholar
  60. 60.
    Woolever CA, Dewald HD (2001) Electroanalysis 13:309Google Scholar
  61. 61.
    Monterroso SCC, Carapuça HM, Simão JEJ et al (2004) Anal Chim Acta 503:203Google Scholar
  62. 62.
    Wahdat F, Hinkel S, Neeb R (1995) Fresenius J Anal Chem 352:393Google Scholar
  63. 63.
    Hoyer B, Jensen N (2004) Analyst 129:751Google Scholar
  64. 64.
    Brett CMA, Brett AMO, Tugulea L (1996) Anal Chim Acta 322:151Google Scholar
  65. 65.
    Martinotti W, Queirazza G, Guarinoni A, Mori G (1995) Anal Chim Acta 305:183Google Scholar
  66. 66.
    Oliveira MF, Saczk AA, Okumura LL, Fernandes AP, Moraes M, Stradiotto NR (2004) Anal Bioanal Chem 380:135Google Scholar
  67. 67.
    Oliveira MF, Khoulif Z, Jambon C, Chatelut M (1993) Electroanalysis 5:339Google Scholar
  68. 68.
    Daniel L, Zakharova EA, Goloskova NB, Schelkovnikova VV (1992) J Anal Chem 47:448Google Scholar
  69. 69.
    Lange B, Scholz F (1997) Fresenius J Anal Chem 358:736Google Scholar
  70. 70.
    Adeloji SBO, Pablo F (1995) Electroanalysis 7:476Google Scholar
  71. 71.
    Rocha MM, Neto MM, Yorres MO, Varennes A (1997) Electroanalysis 9:145Google Scholar
  72. 72.
    Turyan I, Mandler D (1994) Anal Chem 66:58Google Scholar
  73. 73.
    Adeloju SBO, Pablo F (1992) Anal Chim Acta 270:143Google Scholar
  74. 74.
    Adeloju SBO, Pablo F (1995) Electroanalysis 7:750Google Scholar
  75. 75.
    Sanchez-Misiego A, Garcia-Moncό Carra R, Zirino A (1996) Electroanalysis 8:534Google Scholar
  76. 76.
    Diederich H, Meyer S, Scholz F (1994) Fresenius J Anal Chem 349:670Google Scholar
  77. 77.
    Geary CD, Weber SG (2003) Anal Chem 75:6560Google Scholar
  78. 78.
    Brett CMA, Brett AMO, Pereira JLC (1991) Electroanalysis 3:683Google Scholar
  79. 79.
    Brett CMA, Brett AMO, Tugulea L (1996) Electroanalysis 8:639Google Scholar
  80. 80.
    Economou A, Fielden PR (1993) Anal Chim Acta 273:27Google Scholar
  81. 81.
    Rasul SB, Munir AKM, Hossain ZA et al (2002) Talanta 58:33Google Scholar
  82. 82.
    Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anal Chem 76:5924Google Scholar
  83. 83.
    Korolczuk M (1996) Fresenius J Anal Chem 356:480Google Scholar
  84. 84.
    Ireland-Ripert J, Bermond A, Ducauze C (1982) Anal Chim Acta 143:249Google Scholar
  85. 85.
    Hamlton TW, Ellis J (1979) Anal Chim Acta 110:87Google Scholar
  86. 86.
    Zen IJ, Chung MJ (1995) Anal Chem 67:3571Google Scholar
  87. 87.
    Viter IP, Kamenev AI (1993) J Anal Chem 48:1197Google Scholar
  88. 88.
    Fijatek Z, Łozak A, Sarna K (1998) Electroanalysis 10:846Google Scholar
  89. 89.
    Korolczuk M, Tyszczuk K, Grabarczyk M (2005) Electrochem commun 7:1185Google Scholar
  90. 90.
    Dai X, Compton RG (2006) Analyst 131:516Google Scholar
  91. 91.
    Charalambous A, Economou A (2005) Anal Chim Acta 547:53Google Scholar
  92. 92.
    Kefala G, Economou A, Voulgaropoulos A, Sofoniou M (2003) Talanta 61:603Google Scholar
  93. 93.
    Prior C, Lenehan CE, Walker GS (2006) Electroanalysis 18:2486Google Scholar
  94. 94.
    Boteelho CMS, Boaventura RAR, Goncalves MLS (2002) Electroanalysis 14:1713Google Scholar
  95. 95.
    Banks CE, Kruusma J, Hyde ME et al (2004) Anal Bioanal Chem 379:277Google Scholar
  96. 96.
    Wang J, Lu J, Kirgöz ÜA et al (2001) Anal Chim Acta 434:29Google Scholar
  97. 97.
    Wang J, Lu D, Hongngamdee S, Lin Y et al (2006) Talanta 69:914Google Scholar
  98. 98.
    Krolicka A, Bobrowski A, Kalcher K et al (2003) Electroanalysis 15:1859Google Scholar
  99. 99.
    Korolczuk M, Moroziewicz A, Grabarczyk M (2005) Anal Bional Chem 382:1678Google Scholar
  100. 100.
    Chatzitheodorou E, Economou A, Voulgaropoulos A (2004) Electroanalysis 16:1745Google Scholar
  101. 101.
    Bobrowski A, Nowak K, Zarebski J (2005) Anal Bional Chem 382:1691Google Scholar
  102. 102.
    Lin L, Lawrence N, Thongngamdee S et al (2005) Talanta 65:144Google Scholar
  103. 103.
    Morfobos M, Economou A, Voulgaropoulos A (2004) Anal Chim Acta 519:57Google Scholar
  104. 104.
    Wang J, Thongngamdee S, Lu D (2006) Electroanalysis 18:59Google Scholar
  105. 105.
    Kefala G, Economou A, Voulgaropoulos A (2006) Electroanalysis 18:223Google Scholar
  106. 106.
    Grabarczyk M, Tyszczuk K, Korolczuk M (2006) Electroanalysis 18:70Google Scholar
  107. 107.
    Yang Z, Alafandy M, Boutakhrit K et al (1996) Electroanalysis 8:25Google Scholar
  108. 108.
    El-Maali NA, El-Hady DA (1999) Electroanalysis 11:201Google Scholar
  109. 109.
    El-Maali NA, El-Hady DA, El-Hamid AM, Seliem MM (2000) Anal Chim Acta 417:65Google Scholar
  110. 110.
    Di J, Zhang F, Zhang M, Bi S (2004) Еlectroanalysis 16:644Google Scholar
  111. 111.
    Guo SH, Khoo SB (1999) Electroanalysis 11:891Google Scholar
  112. 112.
    Turyan I, Mandler D (1994) Fresenius J Anal Chem 349:491Google Scholar
  113. 113.
    Hu S, Wu K, Yi H et al (2001) Fresenius J Anal Chem 370:101Google Scholar
  114. 114.
    Shiu KK, Song FY (1998) Elecrtoanalysis 10:256Google Scholar
  115. 115.
    Komura T, Isogai S, Yamaguchi T et al (2000) J Electroanal Chem 490:70Google Scholar
  116. 116.
    Li Q, Bi S, Ji G (2003) J Electroanal Chem 560:19Google Scholar
  117. 117.
    Huang W, Zhang S (2002) Anal Sci 18:187Google Scholar
  118. 118.
    Zbou Y, Zbu G, Wang E (1994) Electroanalysis 6:903Google Scholar
  119. 119.
    Wagner K, Strojek JW, Koziel K (2001) Anal Chim Acta 447:11Google Scholar
  120. 120.
    García CD, Ortiz PI (2003) Talanta 61:547Google Scholar
  121. 121.
    Khoo SB, Zhu J (1999) Electroanalysis 11:546Google Scholar
  122. 122.
    Turyan I, Mandler D (1994) Electroanalysis 6:838Google Scholar
  123. 123.
    Turyan I, Mandler D (1993) Nature. Scientific correspondence 362:703Google Scholar
  124. 124.
    Lu J, He X, Zeng X et al (2003) Talanta 59:553Google Scholar
  125. 125.
    Zheng H, Dong H, Yan Z et al (2006) Electroanalysis 18:2115Google Scholar
  126. 126.
    Zheng H, Yan Z, Dong H, Ye B (2007) Sens Actuators B: Chemical 120:603Google Scholar
  127. 127.
    Crowley K, Cassidy J (2002) Electroanalysis 14:1077Google Scholar
  128. 128.
    Yang S, Tian H, Wang D, Tang Y (1995) J Electroanal Chem 383:31Google Scholar
  129. 129.
    Moretto LM, Ugo P, Lacasse R et al (1999) Electrochemical Society Proceedings. Proceedings of the symposium on “Chemical and biological sensors and analytical electrochemical methods” 97:255Google Scholar
  130. 130.
    Ugo P, Moretto LM, Rudello A et al (2001) Electroanalysis 13:661Google Scholar
  131. 131.
    Ugo P, Moretto LM, Boni AD et al (2002) Anal Chim Acta 474:147Google Scholar
  132. 132.
    Kruusma J, Nei L, Hardcastle JL et al (2004) Electroanalysis 16:399Google Scholar
  133. 133.
    Gutierrez CA, Hardcastle JL, Ball JC, Compton RG (1999) Analyst 124:1053Google Scholar
  134. 134.
    Hurst MP, Bruland KW (2005) Anal Chim Acta 546:68Google Scholar
  135. 135.
    Dam MER, Scroder KH (1996) Electroanalysis 8:1040Google Scholar
  136. 136.
    Capelo S, Mota AM, Gonçalves MLS (1995) Electroanalysis 7:563Google Scholar
  137. 137.
    West CE, Hardcastle JL, Compton RG (2002) Electroanalysis 14:1470Google Scholar
  138. 138.
    Brett CMA, Brett AMO, Matysik FM et al (1996) Talanta 43:2015Google Scholar
  139. 139.
    Matysik FM, Matysik S, Brett AMO, Brett CMA (1997) Anal Chem 69:1651Google Scholar
  140. 140.
    Brett CMA, Alves VA, Fungaro DA (2001) Electroanalysis 13:212Google Scholar
  141. 141.
    Lam MT, Chakrabarti CL, Cheng J, Pavski V (1997) Electroanalysis 9:1018Google Scholar
  142. 142.
    Dalangin RR, Gunasingham H (1994) Anal Chim Acta 291:81Google Scholar
  143. 143.
    Murimboh J, Lam MT, Hassan NM, Chakrabarti CL (2000) Anal Chim Acta 423:115Google Scholar
  144. 144.
    Buckova M, Vanickova M, Labuda J (1996) Chem Papers 50:279Google Scholar
  145. 145.
    Zen JM, Ting YS (1996) Anal Chim Acta 332:59Google Scholar
  146. 146.
    Wang J, Deo RP, Thongngamdee S, Ogorevc B (2001) Electroanalysis 13:1153Google Scholar
  147. 147.
    Kefala G, Economou A, Voulgaropoulos A (2004) Analyst 129:1082Google Scholar
  148. 148.
    Merkoçi A, Vasjari M, Fabregas E et al (2000) Microchim Acta 135:29Google Scholar
  149. 149.
    Turyan I, Atiya M, Mandler D (2001) Electroanalysis 13:653Google Scholar
  150. 150.
    Chen Z, Pourabedi Z, Hibbert DB (1999) Electroanalysis 11:964Google Scholar
  151. 151.
    Li NB, Luo HQ, Chen GN (2004) Anal sci 20:825Google Scholar
  152. 152.
    Zen JM, Huang SY (1994) Anal Chim Acta 296:77Google Scholar
  153. 153.
    Yang HY, Sun IW (2000) Electroanalysis 12:1476Google Scholar
  154. 154.
    Yang HY, Sun IW (1998) Anal Chim Acta 358:285Google Scholar
  155. 155.
    Zen JM, Hsu FS, Chi NY et al (1995) Anal Chim Acta 310:407Google Scholar
  156. 156.
    Zen JM, Lin HY, Yang HH (2001) Electroanalysis 13:505Google Scholar
  157. 157.
    Ugo P, Moretto LM, Mazzocchi GA (1993) Anal Chim Acta 273:229Google Scholar
  158. 158.
    Ugo P, Moretto LM, Mazzocchi GA (1995) Anal Chim Acta 305:74Google Scholar
  159. 159.
    Ugo P, Zampieri S, Moretto LM, Paolucci D (2001) Anal Chim Acta 434:291Google Scholar
  160. 160.
    Yang HY, Chen WY, Sun IW (1999) Talanta 50:977Google Scholar
  161. 161.
    Lu TH, Sun IW (1998) Electroanalysis 10:1052Google Scholar
  162. 162.
    Lu TH, Huang JF, Sun IW (2002) Anal Chim Acta 454:93Google Scholar
  163. 163.
    Yang HY, Sun IW (2000) Anal Chem 72:3476Google Scholar
  164. 164.
    Yang HY, Sun IW (1999) Electroanalysis 11:195Google Scholar
  165. 165.
    Khoo SB, Zhu J (1998) Anal Chim Acta 373:15Google Scholar
  166. 166.
    Ugo P, Sperni L, Moretto LM (1997) Electroanalysis 9:1153Google Scholar
  167. 167.
    Arrigan DWM, Lowens MJ (1999) Electroanalysis 11:647Google Scholar
  168. 168.
    Yang N, Wan Q, Yu J (2005) Sens Actuators B 110:246Google Scholar
  169. 169.
    Hoyer B, Sørensen G, Jensen N et al (1996) Anal Chem 68:3840Google Scholar
  170. 170.
    Hoyer B, Sørensen G, Jensen N, Christensen MK (1999) Electroanalysis 11:940Google Scholar
  171. 171.
    Zen JM, Wang HF, Kumar AS et al (2002) Electroanalysis 14:99Google Scholar
  172. 172.
    Shpigun LK, Lunina VK (2003) J Anal Chem 58:1200Google Scholar
  173. 173.
    Shpigun LK, Lunina VK (2003) J Anal Chem 58:1097Google Scholar
  174. 174.
    Rahman MA, Won MS, Shim YB (2003) Anal Chem 75:1123Google Scholar
  175. 175.
    Rahman MA, Park DS, Won MS et al (2004) Electroanalysis 16:1366Google Scholar
  176. 176.
    Turyan I, Erichsen T, Schuhmann W et al (2001) Electroanalysis 13:79Google Scholar
  177. 177.
    Zen JM, Wu JW (1996) Anal Chem 68:3966Google Scholar
  178. 178.
    Zen JM, Wu JW (1997) Electroanalysis 9:302Google Scholar
  179. 179.
    Christensen MK, Hoyer B (2000) Electroanalysis 12:35Google Scholar
  180. 180.
    Tsai YC, Davis J, Compton RG et al (2001) Electroanalysis 13:7Google Scholar
  181. 181.
    Brett CMA, Fungaro DA (2000) Talanta 50:1223Google Scholar
  182. 182.
    Monterroso SCC, Carapuca HM, Duarte AC (2003) Electroanalysis 15:1878Google Scholar
  183. 183.
    Mogensen L, Kryger L (1998) Electroanalysis 10:1285Google Scholar
  184. 184.
    Monterroso SCC, Carapuça HM, Duarte AC (2005) Talanta 65:644Google Scholar
  185. 185.
    Monterroso SCC, Carapuça HM, Duarte AC (2006) Talanta 68:1655Google Scholar
  186. 186.
    Lack B, Duncan J, Nyokong T (1999) Anal Chim Acta 385:393Google Scholar
  187. 187.
    Yi H (2003) Anal Bioanal Chem 377:770Google Scholar
  188. 188.
    Wu K, Hu S, Fei J et al (2003) Anal Chim Acta 489:215Google Scholar
  189. 189.
    Sun D, Xie X, Cai Y et al (2007) Anal Chim Acta 581:27Google Scholar
  190. 190.
    Gregory XD, Wildgoose G, Compton RG (2006) Analyst 131:1241Google Scholar
  191. 191.
    Economou A, Fielden PR (2003) Analyst 128:205Google Scholar
  192. 192.
    Ivaska A (1991) Electroanalysis 3:247Google Scholar
  193. 193.
    Mandler D, Turyan I (1996) Electroanalysis 8:207Google Scholar
  194. 194.
    Gooding J, Mearns F, Yang W et al (2003) Electroanalysis 15:81Google Scholar
  195. 195.
    Petrovic SC, Dewald HD (1997) Anal Chim Acta 357:33Google Scholar
  196. 196.
    Paneli MG, Voulgaropoulos A (1993) Electroanalysis 5:355Google Scholar
  197. 197.
    Abu Zuhri AZ, Voelter W (1998) Fresenius J Anal Chem 360:1Google Scholar
  198. 198.
    Zaitsev PM, Salikhdzhanova RF, Zaitsev NK (1999) Zavodsk Lab 65/1:3Google Scholar
  199. 199.
    Kalcher K (1990) Electroanalysis 2:419Google Scholar
  200. 200.
    Ulakhovich NA, Medjantseva EP, Budnikov GK (1993) J Anal Chem 48:980Google Scholar
  201. 201.
    Kalcher K, Kauffmann JM, Wang J et al (1995) Electroanalysis 7:5Google Scholar
  202. 202.
    Simm AO, Banks CE, Wilkins SJ et al (2005) Anal Bioanal Chem 381:979Google Scholar
  203. 203.
    Majid E, Hrapovic S, Liu Y et al (2006) Anal Chem 78:762Google Scholar
  204. 204.
    Švancara I, Vytras K, Bobrowski A, Kalcher K (2002) Talanta 58:45Google Scholar
  205. 205.
    Gevorgjan AM, Vanukov VV, Vaznenko SV (2002) J Anal Chem 57:301Google Scholar
  206. 206.
    Švancara I, Matoušek M, Sikora E et al (1997) Electroanalysis 9:827Google Scholar
  207. 207.
    Flechsig GU, Korbout O, Hocevar SB et al (2002) Electroanalysis 14:192Google Scholar
  208. 208.
    Hočevar S, Švancara I, Vytřas K et al (2005) Electrochim Acta 51:706Google Scholar
  209. 209.
    Švancara I, Baldrianova L, Tesařova E et al (2006) Electroanalysis 18:177Google Scholar
  210. 210.
    Krolicka A, Pauliukaite R, Ŝvancara I et al (2002) Electrochem Commun 4:193Google Scholar
  211. 211.
    Pauliukaite R, Metelka R, Švancara I et al (2002) Anal Bioanal Chem 374:1155Google Scholar
  212. 212.
    Švancara I, Pravda M, Hvizdalova M et al (1994) Electroanalysis 6:663Google Scholar
  213. 213.
    Sherigara BS, Shivaraj Y, Mascarenhas RJ et al (2007) Electrochim Acta 52:3137Google Scholar
  214. 214.
    Mascarenhasa RJ, Satpati AK, Yellappa S et al (2006) Anal Sci 22:871Google Scholar
  215. 215.
    Yoon JH, Muthuraman G, Yang JE et al (2007) Electroanalysis 19:1160Google Scholar
  216. 216.
    Shaydarova LG, Ulakhovich NA, El-Gakhri MA et al (1995) J Anal Chem 50:755Google Scholar
  217. 217.
    Ulakhovich NA, El-Gakhri MA, Shaydarova LG et al (1994) Zavodsk Lab 60/3:14Google Scholar
  218. 218.
    Shaydarova LG, Ulakhovich NA, Fedorova IL et al (1996) J Anal Chem 51:746Google Scholar
  219. 219.
    Shaydarova LG, El-Gakhri MA, Ulakhovich NA et al (1994) J Anal Chem 49:501Google Scholar
  220. 220.
    Ijeri VS, Srivastava AK (2000) Fresenius J Anal Chem 367:373Google Scholar
  221. 221.
    Tanaka S, Yoshida H (1989) Talanta 36:1044Google Scholar
  222. 222.
    Canpolat EÇ, Şar E, Coşkun NY et al (2007) Electroanalysis 19:1109Google Scholar
  223. 223.
    Roa-Morales G, Ramírez-Silva MT, González RL et al (2005) Electroanalysis 17:694Google Scholar
  224. 224.
    Roa-Morales G, Ramírez-Silva MT, Romero-Romo MA et al (2003) Anal Bioanal Chem 377:763Google Scholar
  225. 225.
    Roa-Morales G, Ramírez-Silva MT, González RL et al (2003) J of Solid State Electrochemistry 7:355Google Scholar
  226. 226.
    Alpat SK, Yuksel U, Akcay H (2005) Electrochem commun 7:130Google Scholar
  227. 227.
    Walcarius A, Mariaulle P, Lamberts L (2003) J of Solid State Electrochemistry 7:671Google Scholar
  228. 228.
    Walkarius A, Despas C, Bessiere J (1999) Anal Chim Acta 385:79Google Scholar
  229. 229.
    Walkarius A, Bessiere J (1997) Electroanalysis 9:707Google Scholar
  230. 230.
    Walcarius A, Devoy J, Bessiere J (2000) J. of Solid State Electrochemistry 4:1433Google Scholar
  231. 231.
    Etienne M, Bessiere J, Walcarius A (2001) Sens Actuators 76:531Google Scholar
  232. 232.
    Filho NLD, Carmo DR, Rosa AH (2006) Electrochim Acta 52:965Google Scholar
  233. 233.
    Takeuchi RM, Santos A, Padilha PM et al (2007) Talanta 71:771Google Scholar
  234. 234.
    Takeuchi RM, Santos A, Padilha PM et al (2007) Anal Chim Acta 584:295Google Scholar
  235. 235.
    Marino G, Bergamini MF, Teixeira MS et al (2003) Talanta 59:1021Google Scholar
  236. 236.
    Aleixo LM, Souza MFB, Godinho OES et al (1993) Anal Chim Acta 271:143Google Scholar
  237. 237.
    Filho NLD, Carmo DR, Caetano L et al (2005) Anal Sci 21:1359Google Scholar
  238. 238.
    Yantasee W, Lin Y, Zemanian TS et al (2003) Analyst 128:467Google Scholar
  239. 239.
    Sayen S, Etienne M, Bessieŕe J et al (2002) Electroanalysis 14:1521Google Scholar
  240. 240.
    Yantasee W, Lin Y, Fryxell GE et al (2004) Electroanalysis 16:870Google Scholar
  241. 241.
    Yantasee W, Lin Y, Fryxell GE et al (2004) Anal Chim Acta 502:207Google Scholar
  242. 242.
    Bond AM, Miao W, Smith TD et al (1999) Anal Chim Acta 396:203Google Scholar
  243. 243.
    Shams E, Torabi R (2006) Sens Actuators B 117:86CrossRefGoogle Scholar
  244. 244.
    Ogorevc B, Cai X, Grabec I (1995) Anal Chim Acta 305:176Google Scholar
  245. 245.
    Svegl IG, Ogorevc B, Hudnik V (1996) Fresenius J Anal Chem 354:770Google Scholar
  246. 246.
    Kalcher K, Grabec I, Raber G et al (1995) J Electroanal Chem 386:149Google Scholar
  247. 247.
    Švegl IG, Kolar M, Ogorevc B et al (1998) Fresenius J Anal Chem 361:358Google Scholar
  248. 248.
    Kula P, Navratilova Z (1996) Fresenius J Anal Chem 354:692Google Scholar
  249. 249.
    Huang W (2004) Microchim Acta 144:125Google Scholar
  250. 250.
    Huang W, Yang C, Zhang S (2002) Anal Bioanal Chem 374:998Google Scholar
  251. 251.
    Kula P, Navratilova Z, Kulova P et al (1999) Anal Chim Acta 385:91Google Scholar
  252. 252.
    Wang J, Martinez T (1989) Electroanalysis 1:167Google Scholar
  253. 253.
    Filho NLD, Carmo DRC, Gessner F et al (2005) Anal sci 21:1309Google Scholar
  254. 254.
    Wang J, Greene B, Morgan C (1984) Anal Chim Acta 158:15Google Scholar
  255. 255.
    Labuda J, Korgová H, Vaníčková M (1995) Anal Chim Acta 305:42Google Scholar
  256. 256.
    Agraz R, Sevilla MT, Pinilla JM et al (1991) Electroanalysis 3:393Google Scholar
  257. 257.
    Agraz R, Sevilia MT, Hernandez L (1995) J Electroanalytical Chemistry 390:47Google Scholar
  258. 258.
    Helms I, Scholz F (1996) Fresenius J Anal Chem 356:237Google Scholar
  259. 259.
    Sun Q, Wang C, Li L et al (1999) Fresenius J Anal Chem 363:114Google Scholar
  260. 260.
    Jeong ED, Won MS, Sbim YB (1994) Electroanalysis 6:887Google Scholar
  261. 261.
    Wang C, Zhang H, Sun Y et al (1998) Anal Chim Acta 361:133Google Scholar
  262. 262.
    Wang C, Li H (1998) Electroanalysis 10:44Google Scholar
  263. 263.
    Švegl IG, Ogorevc B (2000) Fresenius J Anal Chem 367:701Google Scholar
  264. 264.
    Švancara I, Kalcher K, Diewald W et al (1996) Electroanalysis 8:336Google Scholar
  265. 265.
    Lubert KH, Beyer L, Casabo J et al (1998) Electroanalysis 10:860Google Scholar
  266. 266.
    Guo H, Li Y, Xiao P et al (2005) Anal Chim Acta 534:143Google Scholar
  267. 267.
    Liu N, Song JF (2005) Anal Bioanal Chem 383:358Google Scholar
  268. 268.
    Ju-nan L, Jun Z, Pei-hong D et al (2001) Analyst 126:2032Google Scholar
  269. 269.
    Liu S, Li J, Zhang S et al (2005) Applied Surface Science 252:2078Google Scholar
  270. 270.
    Stadlober M, Kalcher K, Raber G (1997) Sci Pap Univ Pardubice Ser A 3:103Google Scholar
  271. 271.
    Stadlober M, Kalcher K, Raber G (1997) Anal Chim Acta 350:319Google Scholar
  272. 272.
    Švancara I, Galik M, Vytras K (2006) Talanta 72:512Google Scholar
  273. 273.
    Galik M, cholota M, Švancara I et al (2006) Electroanalysis 18:2218Google Scholar
  274. 274.
    Bai ZP, Nakamura T, Izutsu K (1990) Electroanalysis 2:75Google Scholar
  275. 275.
    Ferri T, Guidi F, Morabito R (1994) Electroanalysis 6:1087Google Scholar
  276. 276.
    Raber G, Kalcher K, Neuhold CG et al (1995) Electroanalysis 7:138Google Scholar
  277. 277.
    Gurentsovа OI, Prokhorova GV, Osipova EA (1992) J Anal Chem 47:1671Google Scholar
  278. 278.
    Prokhorova GV, Osipova EA, Gurentsova OI (1993) J Anal Chem 48:1621Google Scholar
  279. 279.
    Osipova EA, Prokhorova GV, Gurentsova OI (1994) Zavodsk Lab 60/2:5Google Scholar
  280. 280.
    Osipova EA, Kamenev AI, Sladkov VE et al (1997) J Anal Chem 52:273Google Scholar
  281. 281.
    Osipova EA, Sladkov VE, Kamenev AI et al (2000) Anal Chim Acta 404:231Google Scholar
  282. 282.
    Osipova EA, Sladkov VE, Shkinev VM (2000) J Anal Chem 55:844Google Scholar
  283. 283.
    Sladkov VE, Osipova EA (2001) J Anal Chem 56:52Google Scholar
  284. 284.
    Yabutani T, Utsunomiya Y, Kado Y et al (2006) Anal sci 22:1021Google Scholar
  285. 285.
    Cai Q, Khoo SB (1995) Electroanalysis 7:379Google Scholar
  286. 286.
    Khoo SB, Guo SX (1999) J Electroanal Chem 465:102Google Scholar
  287. 287.
    Khodari M, Krisha MMA, Fandy R (1994) Talanta 41:2179Google Scholar
  288. 288.
    Fanta K, Chandravanshi BS (2001) Electroanalysis 13:484Google Scholar
  289. 289.
    Degefa TH, Chandravanshi BS, Alemu H (1999) Electroanalysis 11:1305Google Scholar
  290. 290.
    Refera T, Chandravanshi BS, Alemu H (1998) Electroanalysis 10:1038Google Scholar
  291. 291.
    Molina-Holgado T, Pinilla-Macias JM, Hernandez-Hernandez L (1995) Anal Chim Acta 309:117Google Scholar
  292. 292.
    Ruiperez J, Mendiola MA, Sevilla MT et al (2002) Electroanalysis 14:532Google Scholar
  293. 293.
    Colilla M, Mendiola MA, Procopio JR et al (2005) Electroanalysis 17:933Google Scholar
  294. 294.
    Hernandez E, Naranjo-Rodriguez I, Hidalgo-Hidalgo de Cisneros JL (2007) Sens Actuators B 123:488Google Scholar
  295. 295.
    Navratilova Z (1991) Electroanalysis 3:799Google Scholar
  296. 296.
    Prabhu SV, Baldwin RP (1987) Anal Chem 59:1074Google Scholar
  297. 297.
    Gao Z, Li P, Wang G et al (1990) Anal Chim Acta 241:137Google Scholar
  298. 298.
    Hu C, Wu K, Dai X et al (2003) Talanta 60:17Google Scholar
  299. 299.
    Khoo SB, Soh MK, Cai Q et al (1997) Electroanalysis 9:45Google Scholar
  300. 300.
    Lu X, Wang Z, Geng Z et al (2000) Talanta 52:411Google Scholar
  301. 301.
    Guttman M, Beyer KHL (1996) Fresenius J Anal Chem 356:263Google Scholar
  302. 302.
    Agraz R, Miguel J, Sevilla MT et al (1996) Electroanalysis 8:565Google Scholar
  303. 303.
    Peng T, Shen L, Wang G (1996) Microchimica Acta 122:125Google Scholar
  304. 304.
    Woon MS, Moon DW, Shim YB (1995) Electroanalysis 7:1171Google Scholar
  305. 305.
    Khoo SB, Zhu J (1996) Analyst 121:1983Google Scholar
  306. 306.
    Adraoui I, Rhazi ME, Amine A et al (2005) Electroanalysis 17:685Google Scholar
  307. 307.
    Khoo SB, Cai Q (1996) Electroanalysis 8:549Google Scholar
  308. 308.
    Zhang ZQ, Liu H, Zhang H et al (1996) Anal Chim Acta 333:119Google Scholar
  309. 309.
    Kurbatov DI, Bulgakova L (1996) J Anal Chem 51:410Google Scholar
  310. 310.
    Liu S, Li J, Mao X (2003) Electroanalysis 15:1751Google Scholar
  311. 311.
    Connor M, Dempsey E, Smytb MR et al (1991) Electroanalysis 3:331Google Scholar
  312. 312.
    Ramos JA, Bermejo E, Zapardiel A et al (1993) Anal Chim Acta 273:219Google Scholar
  313. 313.
    Brainina Kh, Neyman E (1993) Electroanalytical stripping methods. Wiley, New YorkGoogle Scholar
  314. 314.
    Brainina Kh, Khodos M, Belisheva G, Vidrevich M (1990) Zeitschrift Fur Physikalischr Chemie Neue Folge 168:65Google Scholar
  315. 315.
    Gruner W, Stablberg R, Brainina Kh, Akselrod N, Kamyshov V (1990) Electroanalysis 2:397Google Scholar
  316. 316.
    Ulakhovich NA, Medjantseva EP, Mashkina SV (1997) J Anal Chem 52:373Google Scholar
  317. 317.
    Domenech-Carbo A, Domenech-Carbo MT, Gimeno-Adelantado JV et al (2000) Electroanalysis 12:120Google Scholar
  318. 318.
    Fetisov VB, Ermakov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KHZ (2004) J Solid State Electrochem 8:565Google Scholar
  319. 319.
    Grygar T, Marken F, Schröder U, Scholz F (2002) Collect Czech Chem Commun 67:163Google Scholar

Copyright information

© The Author(s) 2007

Authors and Affiliations

  • Natalya Yu. Stozhko
    • 1
  • Natalya A. Malakhova
    • 1
  • Mikhail V. Fyodorov
    • 1
  • Khiena Z. Brainina
    • 1
  1. 1.Ural State University of EconomyEkaterinburgRussia

Personalised recommendations