Skip to main content
Log in

Dispersed platinum and tin polyaniline film electrodes for the anodes of the direct methanol fuel cell

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To develop better and cheaper electrocatalysts for the oxidation of methanol in direct methanol fuel cells, several combinations of a conductive polymer polyaniline (PANI) and dispersed metal particles such as Pt and Sn were examined. The anodic current for the methanol oxidation (i MeOH) showing the electrocatalytic activity of Pt particles was remarkably enhanced when the particles were dispersed on PANI films that should provide higher surface areas for the dispersed particles. The activity strongly depended on the morphology and the electric conductivity of the PANI films electropolymerized in five different acid solutions: H2SO4, HNO3, HClO4, HBF4, and HCl. The highest activity was achieved using the dispersed Pt particle on PANI film electropolymerized from H2SO4 polymerizing solution. In order to reduce the dispersed amount of the expensive Pt particles, other metal particles were pre-dispersed on the PANI film prepared from the H2SO4 polymerizing solution, and then Pt particles were dispersed on the film. Among the pre-dispersed metal particles attempted here (Sn, Cu, Cr, Ni, In, Co, Sb, Bi, Pb, and Mn), the highest activity was obtained with Sn particles. When the ratio of dispersed Pt to Sn particles ranges from 32:68 to 100:0, i MeOH is higher than that measured with the dispersed Pt particle on PANI films without the Sn particles. This means that the dispersed amount of the Pt particles could be reduced by utilizing dispersed Sn particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wei Z, Guo H, Tang Z (1999) J Electroanal Chem 461:14

    Article  Google Scholar 

  2. Wasmus S, Kuver A (1996) J Power Sources 58:239

    Article  Google Scholar 

  3. Wasmus S, Vielstich W (1993) J Appl Electrochem 23:120

    Article  CAS  Google Scholar 

  4. Hamnett A, Througton GL (1992) Chem and Indust 6:480

    Google Scholar 

  5. Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127:112

    Article  CAS  Google Scholar 

  6. Arico AS, Baglio V, Modica E, Blasi A, Antonucci V (2004) Electrochem Commun 6:164

    Article  CAS  Google Scholar 

  7. Goetz M, Wendt H (2001) J Appl Electrochem 31:811

    Article  CAS  Google Scholar 

  8. Castro-Luna AM (2000) J Appl Electrochem 30:1137

    Article  Google Scholar 

  9. Laborde H, Léger J, Lamy C (1994) J Appl Electrochem 24:219

    CAS  Google Scholar 

  10. Laborde H, Léger J, Lamy C, Garnier F, Yassar A (1990) J Appl Electrochem 20:524

    Article  CAS  Google Scholar 

  11. Génies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Met 36:139

    Article  Google Scholar 

  12. Stilwell DE, Park SM (1989) J Electrochem Soc 136:427, 688

    Google Scholar 

  13. Stilwell DE, Park SM (1988) J Electrochem Soc 135:2254, 2491, 2497

    Google Scholar 

  14. Huang W, Humphrey BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans 1(52):2385

    Google Scholar 

  15. Wu G, Li L, Li J, Xu B (2006) J Power Sources 155:118

    CAS  Google Scholar 

  16. Hatchett DW, Wijeratne R, Kinyanjui JM (2006) J Electroanal Chem 593:203

    Article  CAS  Google Scholar 

  17. Wu Y, Li W, Lu J, Du J, Lu D, Fu J (2005) J Power Sources 145:286

    Article  CAS  Google Scholar 

  18. Niu L, Li Q, Wei F, Wu S, Liu P, Cao X (2005) J Electroanal Chem 578:331

    Article  CAS  Google Scholar 

  19. Wu K, Meng X, Wang X, Li J (2005) Rare Met 24:33

    Google Scholar 

  20. Wu G, Li L, Li J, Xu B (2005) Carbon 43:2579

    Article  CAS  Google Scholar 

  21. Li W, Lu J, Du J, Lu D, Chen H, Li H (2005) Electrochem Commun 7:406

    Article  CAS  Google Scholar 

  22. Choi J, Kim Y, Lee J, Cho K, Jung H, Park J, Park I, Sung Y (2005) Solid State Ionics 176:3031

    Article  CAS  Google Scholar 

  23. Zhou H, Jiao S, Chen J, Wei W, Kuang Y (2004) J Appl Electrochem 34:455

    Article  CAS  Google Scholar 

  24. Kessler T, Castro Luna AM (2003) J Solid State Electrochem 7:593

    Article  CAS  Google Scholar 

  25. Kitani A, Akashi T, Sugimoto K, Ito S (2001) Synth Met 121:1301

    Article  CAS  Google Scholar 

  26. Kitani A, Kaya M, Tsujioka S, Sasaki K (1988) J Polym Sci Polym Chem Ed 26:1531

    Article  CAS  Google Scholar 

  27. Yoshikawa K, Yoshioka K, Kitani K, Sasaki K (1989) J Electroanal Chem 270:421

    Article  CAS  Google Scholar 

  28. Desilvestro J, Scheifele W (1993) J Mater Chem 3:263

    Article  CAS  Google Scholar 

  29. Choi S, Park S (2002) J Electrochem Soc 149:E26

    Article  CAS  Google Scholar 

  30. Lamy C, Rousseau S, Belgsir EM, Léger J (2004) Electrochim Acta 49:3901

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, J., Shiraga, T. & Kitani, A. Dispersed platinum and tin polyaniline film electrodes for the anodes of the direct methanol fuel cell. J Solid State Electrochem 12, 1179–1182 (2008). https://doi.org/10.1007/s10008-007-0469-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0469-z

Keywords

Navigation