Skip to main content
Log in

Electrochemical study of methylene blue/titanate nanotubes nanocomposite and its layer-by-layer assembly multilayer films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Titanate nanotubes (TNT) were proven to be efficient support for the immobilization of methylene blue (MB). UV–vis absorption and Fourier transform infrared spectra showed that the effect of MB absorbed on TNT was better than nanocrystalline anatase TiO2 (TNP). The quantity of MB absorbed onto TNT was found to be greater than that of TNP and the electrode modified with the MB–TNT film was more stable due to the strong interaction between TNT and MB as well. The absorption of MB on TNT was impacted by the pH value of the reaction solution for the change of surface charge. Electrochemical oxidation of dopamine (DA) at different electrodes was studied. The result showed that the MB–TNT composite film exhibited excellent catalytic activities to DA compared to those of pure TNT, which is a result of the great promotion of the electron-transfer rate between DA and the electrode surface by the MB–TNT film. Furthermore, the layer-by-layer self-assembly behavior of the electrochemically functional MB–TNT nanocomposite was also discussed after obtaining the stable colloid suspension of MB–TNT. The excellent electrochemical ability and the easy fabrication of layered nanocomposite make the MB–TNT nanocomposite very promising in electrochemistry study and new nanotube-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tsai CC, Teng HS (2006) Chem Mater 15:367

    Article  Google Scholar 

  2. Yu JG, Yu HG, Cheng B, Zhao XJ, Zhang QJ (2006) J Photochem Photobiol A Chem 182:121

    Article  CAS  Google Scholar 

  3. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) Angew Chem Int Ed 43:2286

    Article  CAS  Google Scholar 

  4. Yu HG, Yu JG, Cheng B, Zhou MH (2006) J Solid State Chem 179:349

    Article  CAS  Google Scholar 

  5. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807

    Article  CAS  Google Scholar 

  6. Lin CH, Chien SH, Chao JH, Sheu CY, Cheng YC, Huang YJ, Tsai CH (2002) Catal Letters 80:153

    Article  CAS  Google Scholar 

  7. Qu JP, Zhang XG, Wang YG, Xie CX (2005) Electrochim Acta 50:3576

    Article  CAS  Google Scholar 

  8. Li JR, Tang ZL, Zhang ZT (2005) Electrochem Commun 7:62

    Article  CAS  Google Scholar 

  9. Ponce-de-Leon C, Bavykin DV, Walsh FC (2006) Electrochim Acta 8:1655

    CAS  Google Scholar 

  10. Li H, Zhu BL, Feng YF, Wang SR, Zhang SM, Huang WP (2007) J Solid State Chem 180:2136

    Article  CAS  Google Scholar 

  11. Yu JG, Yu HG, Cheng B, Trapalis C (2006) J Mol Catal A Chem 249:135

    Article  CAS  Google Scholar 

  12. Xu JC, Lu M, Guo XY, Lia HL (2005) J Mol Catal A Chem 226:123

    Article  CAS  Google Scholar 

  13. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) J Mater Chem 4:3370

    Article  Google Scholar 

  14. Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ (2003) Phys Rev Lett 91:256103

    Article  CAS  Google Scholar 

  15. Kim GS, Ansari SG, Seo HK, Kim YS, Shin HS (2007) J Appl Phys 101:024314

    Article  Google Scholar 

  16. Sun XM, Li YD (2003) Chem Eur J 9:2229

    Article  CAS  Google Scholar 

  17. Bavykin DV, Lapkin AA, Plucinski PK, Murciano LT, Friedrich JM, Walsh FC (2007) Top Catal 39:151

    Article  Google Scholar 

  18. Hodos M, Horváth E, Haspel H, Kukovecz Á, Kónya Z, Kiricsi I (2004) Chem Phys Lett 399:512

    Article  CAS  Google Scholar 

  19. Wang M, Guo DJ, Li HL (2005) J Solid State Chem 178:1996

    Article  CAS  Google Scholar 

  20. He KX, Zhang XG, Li J (2006) Electrochim Acta 51:1289

    Article  CAS  Google Scholar 

  21. Chen Q, Zhou WZ, Du GH, Peng LM (2002) Adv Mater 14:1208

    Article  CAS  Google Scholar 

  22. Murciano LT, Lapkin AA, Bavykin DV, Walsh FC, Wilson K (2007) J Catal 245:272

    Article  Google Scholar 

  23. Idakiev V, Yuan ZY, Tabakova T, Su BL (2005) Appl Catal A Gen 281:149

    Article  CAS  Google Scholar 

  24. Hou LR, Yuan CZ, Peng Y (2007) J Hazard Mater B139:310

    Article  Google Scholar 

  25. Wang YG, Wang ZD, Xia YY (2005) Electrochim Acta 50:5641

    Article  CAS  Google Scholar 

  26. Yao H, Li N, Xu S, Xu JZ, Zhu JJ, Chen HY (2005) Biosens Bioelectron 21:372

    Article  CAS  Google Scholar 

  27. Liu CY, Hu JF, Hu JM, Tang HW (2006) Electroanalysis 18:478

    Article  CAS  Google Scholar 

  28. Yan YM, Zhang MN, Gong KP, Su L, Guo ZX, Mao LQ (2005) Chem Mater 17:457

    Google Scholar 

  29. Xian YZ, Liu F, Xian Y, Zhou YY, Jin LT (2006) Electrochim Acta 51:6527

    Article  CAS  Google Scholar 

  30. Lin XH, Wu P, Chen W, Zhang YF, Xia XH (2007) Talanta 72:468

    Article  CAS  Google Scholar 

  31. Tan L, Yao SZ, Xie QJ (2007) Talanta 71:827

    Article  CAS  Google Scholar 

  32. Meric B, Kerman K, Ozkan D, Kara P, Erensoy S, Akarca US, Mascini M, Ozsoz M (2002) Talanta 56:837

    Article  CAS  Google Scholar 

  33. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  34. Tokudome H, Miyauchi M (2004) Chem Commun 8:958

    Article  Google Scholar 

  35. Xu ZA, Gao N, Dong SJ (2006) Talanta 68:753

    Article  CAS  Google Scholar 

  36. Sha YF, Qian L, Ma Y, Bai HX, Yang XR (2006) Talanta 70:556

    Article  CAS  Google Scholar 

  37. Bavykin DV, Milsom EV, Marken F, Kim DH, Marsh DH, Riley DJ, Walsh FC, El-Abiary KH, Lapkin AA (2005) Electrochem Commun 7:1050

    Article  CAS  Google Scholar 

  38. Liu AH, Wei MD, Honma I, Zhou HS (2005) Anal Chem 77:8068

    Article  CAS  Google Scholar 

  39. Nelson BP, Candal R, Corn RM, Anderson MA (2000) Langmuir 16:6094

    Article  CAS  Google Scholar 

  40. Muruganandham M, Swaminathan M (2006) Dyes Pigm 68:133

    Article  CAS  Google Scholar 

  41. Yu JG, Zhao L, Cheng B (2006) Mater Chem Phys 96:311

    Article  CAS  Google Scholar 

  42. Martin CR, Kohli P (2003) Nat Rev Drug Discov 2:29

    Article  CAS  Google Scholar 

  43. Yuan S, Hu SS (2004) Electrochim Acta 49:4287

    Article  CAS  Google Scholar 

  44. Liu AH, Wei MD, Honma I, Zhou HS (2006) Adv Funct Mater 16:371

    Article  CAS  Google Scholar 

  45. Milsom EV, Novak J, Green SJ, Zhang XH, Stott SJ, Mortimer RJ, Edler K, Marken F (2006) J Solid State Electrochem 11:1109

    Article  Google Scholar 

  46. Ma RZ, Sasaki T, Bando Y (2004) J Am Chem Soc 126:10382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (No. 20475018) and the Natural Science Foundation of Guangdong (No. 07006544) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiShi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, M., Wang, L., Wu, Y. et al. Electrochemical study of methylene blue/titanate nanotubes nanocomposite and its layer-by-layer assembly multilayer films. J Solid State Electrochem 12, 1159–1166 (2008). https://doi.org/10.1007/s10008-007-0466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0466-2

Keywords

Navigation