Skip to main content
Log in

Solid state electrochemical of the erbium hexacyanoferrate-modified carbon ceramic electrode and its electrocatalytic oxidation of l-cysteine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A kind of erbium hexacyanoferrate (ErHCF)-modified carbon ceramic electrodes (CCEs) fabricated by mechanically attaching ErHCF samples to the surface of CCEs derived from sol–gel technique was proposed. The resulting modified electrodes exhibit well-defined redox responses with the formal potential of +0.215 V [vs saturated calomel electrode (SCE)] at a scan rate of 20 mV s−1 in 0.5 M KCl (pH 7) solution. The voltammetric characteristics of the ErHCF-modified CCEs were investigated by voltammetry. Attractively, the ErHCF-modified CCEs presented good electrocatalytic activity with a marked decrease in the overvoltage about 400 mV for l-cysteine oxidation. The calibration plot for l-cysteine determination was linear at 5.0 × 10−6–1.3 × 10−4 M with a linear regression equation of I(A) = 0.558 + 0.148c (μM) (R 2 = 0.9989, n = 20), and the detection limit was 2 × 10−6 M (S/N = 3). At last, the ErHCF-modified CCEs were used for amperometric detection of l-cysteine in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murray RW (1992) In: Murray RW (ed) Molecular design of electrode surfaces, techniques of chemistry series, vol 22. Wiley, Chichester, pp 49–118

    Google Scholar 

  2. Zadronecki M, Linek IA, Stroka J, Wrona PK, Galus Z (2001) J Electrochem Soc 148:348

    Article  Google Scholar 

  3. Jeerage KM, Steen WA, Schwartz DT (2002) Chem Mater 14:530

    Article  CAS  Google Scholar 

  4. Vittal R, Jayalakshmi M, Gomathi H, Rao GP (1999) J Electrochem Soc 146:786

    Article  CAS  Google Scholar 

  5. Carpenter MK, Conell RS, Simko SJ (1990) Inorg Chem 29:845

    Article  CAS  Google Scholar 

  6. Kulesza PJ, Malik MA, Miecznikowski K, Wolkiewicz A, Zamponi S, Berrettoni M, Marassi R (1996) J Electrochem Soc 143:10

    Article  Google Scholar 

  7. Kaneko M, Okada T (1988) J Electroanal Chem 255:45

    Article  CAS  Google Scholar 

  8. Kalwellis-Mohn S, Grabner EW (1989) Electrochim Acta 34:1265

    Article  Google Scholar 

  9. Jayalakshmi M, Scholz F (2000) J Power Sources 91:217

    Article  CAS  Google Scholar 

  10. Nishizawa M, Kuwabata S, Yoneyama H (1996) J Electrochem Soc 143:3462

    Article  CAS  Google Scholar 

  11. Wu Y, Pfenning BW, Bocarsly AB (1995) Inorg Chem 34:4262

    Article  CAS  Google Scholar 

  12. Sawant SN, Bagkar N, Subramanian H, Yakhmi JV (2004) Philos Mag 84:2127

    Article  CAS  Google Scholar 

  13. Casero E, Pariente F, Lorenzo E (2003) Anal Bioanal Chem 375:294

    CAS  Google Scholar 

  14. Tsiafoulis CG, Trikalitis PN, Prodromidis MI (2005) Electrochem Commun 7:1398

    Article  CAS  Google Scholar 

  15. Neff VD (1978) J Electrochem Soc 125:886

    Article  CAS  Google Scholar 

  16. Itaya K, Ataka T, Toshima S (1982) J Am Chem Soc 104:3751

    Article  CAS  Google Scholar 

  17. Eftekhari A (2003) J Power Sources 117:249

    Article  CAS  Google Scholar 

  18. Gao ZQ (1994) J Electroanal Chem 370:95

    Article  CAS  Google Scholar 

  19. Wang P, Jing XY, Zhang WY, Zhu GY (2001) J Solid State Electrochem 5:369

    Article  CAS  Google Scholar 

  20. Liu MC, Li P, Zhang L, Xian YZ, Ding HC, Zhang CL, Zhang FF, Jin LT (2005) Chin J Chem 23:983

    Article  CAS  Google Scholar 

  21. Wang P, Yuan Y, Jing XY, Zhu GY (2001) Talanta 53:863

    Article  CAS  Google Scholar 

  22. Liu YQ, Yan Y, Shen HX (2005) Chin J Chem 23:1165

    Article  CAS  Google Scholar 

  23. Mullica DF, Perkins HO, Sappenfield EL, Leschnitzer D (1989) Acta Crystallogr C 45:330

    Article  Google Scholar 

  24. Petter W, Gramlich V, Hulliger F (1989) J Solid State Chem 82:161

    Article  CAS  Google Scholar 

  25. Grallagher PK, Prescott B (1970) Inorg Chem 9:2510

    Article  Google Scholar 

  26. Sakamoto M, Matsuki K, Ohsumi R, Nakayama Y, Matsumoto A, Okawa H (1992) Bull Chem Soc Jpn 65:2278

    Article  CAS  Google Scholar 

  27. Mullica DF, Perkins HO, Sappenfield EL, Grossie DA (1988) J Solid State Chem 74:9

    Article  CAS  Google Scholar 

  28. Willems JJG (1984) Philips J Res 39:1

    Google Scholar 

  29. Van Druten GMR, Labbé E, Paul-Boncour V, Périchon J, Percheron-Guéau A (2000) J Electroanal Chem 487:31

    Article  Google Scholar 

  30. Zhao S, Sin JKO, Xu B, Zhao M, Peng Z, Cai H (2000) Sens Actuators, B 64:83

    Article  Google Scholar 

  31. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Voltammetry of solid microparticles immobilized on electrode surfaces in electroanalytical chemistry, vol 20. Marcel Dekker, New York, p 1

    Google Scholar 

  32. Liu SQ, Chen HY (2002) J Electroanal Chem 528:190

    Article  CAS  Google Scholar 

  33. Zakharchuk NF, Naumov N, Stösser R, Schröder U, Scholz F, Mehner H (1999) J Solid State Electrochem 3:264

    Article  CAS  Google Scholar 

  34. Wu P, Cai CX (2005) Chin J Chem 23:127

    Article  CAS  Google Scholar 

  35. Wu P, Cai CX (2005) Electroanalysis 17:1583

    Article  CAS  Google Scholar 

  36. Wu P, Cai CX (2004) J Solid State Eletrochem 8:538

    CAS  Google Scholar 

  37. Scholz F, Lange B (1992) Trends Anal Chem 11:359

    Article  CAS  Google Scholar 

  38. Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ (1995) J Phys Chem 99:2096

    Article  CAS  Google Scholar 

  39. Wu P, Cai CX, Lu TH (2004) Chin J Appl Chem 11:25

    Google Scholar 

  40. Wu P, Cai CX (2005) J Electroanal Chem 576:49

    Article  CAS  Google Scholar 

  41. Wu P, Shi YM, Cai CX (2006) J Solid State Electrochem 10:270

    Article  CAS  Google Scholar 

  42. Sheng QL, Yu H, Zheng JB (2007) Electrochim Acta 52:4506

    Article  CAS  Google Scholar 

  43. Sheng QL, Yu H, Zheng JB (2007) J Electroanal Chem 606:39

    Article  CAS  Google Scholar 

  44. Tsionsky M, Gun J, Glezer V, Lev O (1994) Anal Chem 66:1747

    Article  CAS  Google Scholar 

  45. Ogura K, Nakayama M, Nakaoka K (1999) J Electroanal Chem 474:101

    Article  CAS  Google Scholar 

  46. Kulesza PJ, Zamponi S, Berrettoni M, Marassi R, Malik MA (1995) Electrochim Acta 40:681

    Article  CAS  Google Scholar 

  47. Vittal R, Gomathi H (2002) J Phys Chem B 106:10135

    Article  CAS  Google Scholar 

  48. Sinha S, Humphrey BD, Bocarsly AB (1984) Inorg Chem 23:203

    Article  CAS  Google Scholar 

  49. Ayers JB, Piggs WH (1971) J Inorg Nucl Chem 33:721

    Article  CAS  Google Scholar 

  50. Vannerberg NG (1976) Chem Scr 9:122

    CAS  Google Scholar 

  51. Moon SB, Xidis A, Neff VD (1993) J Phys Chem 97:1634

    Article  CAS  Google Scholar 

  52. Zakharchuk NF, Meyer B, Henning H, Scholz F, Jaworksi A, Stojek Z (1995) J Electroanal Chem 398:23

    Article  Google Scholar 

  53. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870

    Article  CAS  Google Scholar 

  54. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  55. Itaya K, Uchida I, Neff VD (1986) Acc Chem Res 19:162

    Article  CAS  Google Scholar 

  56. McCarger JW, Neff VD (1988) J Phys Chem 92:3598

    Article  Google Scholar 

  57. Halbert MK, Baldwin RP (1985) Anal Chem 57:591

    Article  CAS  Google Scholar 

  58. Shi G, Lu J, Xu F, Sun W, Jin L, Yamamoto K, Tao S, Jin J (1999) Anal Chim Acta 391:307

    Article  CAS  Google Scholar 

  59. Salimi A, Hallaj R, Amini MK (2005) Anal Chim Acta 534:335

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of this project by the National Science Foundation of China (No. 20675062) and the Natural Science Foundation of Shaanxi Province of China (No.2004B20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Bin Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, QL., Yu, H. & Zheng, JB. Solid state electrochemical of the erbium hexacyanoferrate-modified carbon ceramic electrode and its electrocatalytic oxidation of l-cysteine. J Solid State Electrochem 12, 1077–1084 (2008). https://doi.org/10.1007/s10008-007-0437-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0437-7

Keywords

Navigation