Skip to main content
Log in

Modeling of solvent viscosity effects on the electroreduction of Pt(II) aquachlorocomplexes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solvent dynamics effects on the electroreduction of [PtCl3(H2O)] at a mercury electrode are explored in the framework of Sumi–Marcus model using an efficient computational scheme. According to results of density functional calculations, the second electron transfer step may be regarded as rate controlling. The nonmonotonous influence of solvent viscosity on the reaction rate is predicted and explained in terms of the saddle point avoidance. The results of model calculations are employed to interpret experimental data reported earlier in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The total reorganization energy for [PtCl4]2− (first electron transfer) was estimated to be smaller as compared with [PtCl3(H2O)].

References

  1. Sumi H, Marcus R (1986) J Chem Phys 84:4894

    Article  CAS  Google Scholar 

  2. Nadler W, Marcus R (1987) J Chem Phys 86:3906

    Article  CAS  Google Scholar 

  3. Berezhkovsky AM, Zitserman VYu (1990) Physica A 166:585

    Article  Google Scholar 

  4. Basilevsky MV, Ryabov VM, Weinberg NN (1990) J Phys Chem 94:8734

    Article  Google Scholar 

  5. Zhu J, Rasaiah JC (1992) J Chem Phys 96:1435

    Article  CAS  Google Scholar 

  6. Nagasawa Y, Yartsev AP, Tominaga K, Johnson AE, Yoshihara K (1994) J Chem Phys 101:5717

    Article  CAS  Google Scholar 

  7. Nagasawa Y, Yartsev AP, Tominaga K, Bisht PB, Johnson AE, Yoshihara K (1995) J Phys Chem 99:653

    Article  CAS  Google Scholar 

  8. Yoshihara K, Tominaga K, Nagasawa Y (1995) Bull Chem Soc Jpn 68:696

    Article  CAS  Google Scholar 

  9. Berezhkovsky AM, Zitserman VYu, Polimeno A (1996) J Chem Phys 105:6342

    Article  Google Scholar 

  10. Sumi H (1996) Chem Phys 212:9

    Article  CAS  Google Scholar 

  11. Sumi H, Asano T (1997) Electrochim Acta 42:2763

    Article  CAS  Google Scholar 

  12. Berezhkovsky AM, D’yakov YuA, Zitserman VYu (1998) J Chem Phys 109:4182

    Article  Google Scholar 

  13. Drljaca A, Hubbard CD, Van Eldik R, Asano T, Basilevsky MV, le Noble WJ (1998) Chem Rev 98:2167

    Article  CAS  Google Scholar 

  14. Okado A (1990) J Chem Phys 111:2665

    Article  Google Scholar 

  15. Okado A (2000) J Chem Phys 112:8595

    Article  Google Scholar 

  16. Ando K, Sumi H (2003) J Chem Phys 118:8315

    Article  CAS  Google Scholar 

  17. Koper MTM (1997) J Phys Chem B 101:3168

    Article  CAS  Google Scholar 

  18. Koper MTM, Voth GA (1997) Chem Phys Lett 101:3168

    CAS  Google Scholar 

  19. Nazmutdinov RR, Tsirlina GA, Manyurov IR, Bronshtein MD, Titova NV, Kuz’minova ZV (2006) Chem Phys 326:123

    Article  CAS  Google Scholar 

  20. Bagchi B, Fleming GR, Oxtoby DW (1983) J Chem Phys 78:7375

    Article  CAS  Google Scholar 

  21. Bagchi B, Fleming GR (1990) J Phys Chem 94:9

    Article  CAS  Google Scholar 

  22. Fawcett WR, Foss CA Jr (1991) Electrochim Acta 36:1767

    Article  CAS  Google Scholar 

  23. Weaver MJ (1992) Chem Rev 92:463

    Article  CAS  Google Scholar 

  24. Fawcett WR, Opallo M (1994) Angew Chem Int Ed Engl 33:2131

    Article  Google Scholar 

  25. Frumkin AN, Florianovich GN (1951) Dokl Akad Nauk SSSR 80:907

    CAS  Google Scholar 

  26. Kivalo P, Laitinen HA (1955) J Am Chem Soc 77:5205

    Article  CAS  Google Scholar 

  27. Nikolaeva-Fedorovich NV, Petrii OA (1961) Zh Fiz Chim 25:1270

    Google Scholar 

  28. Kravtsov VI, Kukushkina VA (1973) Elektrokhimiya 9:1058

    CAS  Google Scholar 

  29. Pobelov IV, Borzenko MI, Tsirlina GA, Petrii OA (2001) Elektrokhimiya 37:270

    Google Scholar 

  30. Bezruchko MM, Tsventarnyi EG, Malev VV (2001) Elektrokhimiya 37:1367

    Google Scholar 

  31. Pobelov IV, Kuz’minova ZV, Tsirlina GA, Petrii OA (2003) Russ J Electrochem 39:828

    Article  CAS  Google Scholar 

  32. Nazmutdinov RR, Pobelov IV, Tsirlina GA, Petrii OA (2000) J Electroanal Chem 491:126

    Article  CAS  Google Scholar 

  33. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  34. Schmickler W (1995) Chem Phys Lett 237:152

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Jr, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 revision B.04. Gaussian Inc Pittsburgh PA

    Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  37. Nazmutdinov RR, Tsirlina GA, Petrii OA, Kharkats YuI, Kuznetsov AM (2000) Electrochim Acta 45:3521

    Article  CAS  Google Scholar 

  38. Borisevich SV, Kharkats YuI, Tsirlina GA (1999) Russ J Electrochem 35:753

    Google Scholar 

  39. Nazmutdinov RR, Glukhov DV, Tsirlina GA, Petrii OA (2003) Russ J Electrochem 39:97

    Article  CAS  Google Scholar 

  40. Ignaczak A, Schmickler W (2002) Chem Phys 278:147

    Article  CAS  Google Scholar 

  41. Ayala R, Marcos ES, Diaz-Moreno S, Solé BA, Muňoz-Páez A (2001) J Phys Chem B 105:7588

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are indebted to Galina A. Tsirlina for many discussions and stimulating comments. Useful discussions with Alexander M. Kuznetsov, Igor G. Medvedev, and Ilya V. Pobelov are also appreciated. This work was supported in part by the Russian Foundation for Basic Research (project no. 05-03-32381a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renat R. Nazmutdinov.

Additional information

Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24th, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmutdinov, R.R., Bronshtein, M.D., Glukhov, D.V. et al. Modeling of solvent viscosity effects on the electroreduction of Pt(II) aquachlorocomplexes. J Solid State Electrochem 12, 445–451 (2008). https://doi.org/10.1007/s10008-007-0405-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0405-2

Keywords

Navigation