Skip to main content
Log in

An in situ SERS and FTIRAS study of salicylate interaction with copper electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The salicylate anion (ortho-hydroxy-benzoate-C6H4OHCOO) interacts with common metals forming a semi-passivating layer on the surface. This semi-passivating layer allows the application of relatively high positive potentials without significant dissolution of the metal. It enables the electro-synthesis of conducting polymers (e.g. polyaniline, polypyrrole) directly on the metal surface, and such polymeric layers can act as anti-corrosion materials. Notwithstanding this characteristic, the behavior of salicylate on different metal surfaces is not yet well-understood. In the present work, the interaction of salicylate with copper (a metal of great interest in the industry) was studied. For this purpose, in situ surface enhanced raman scattering (SERS) and Fourier transform infrared absorption spectroscopy (FTIRAS) experiments were performed. The results show the formation of a copper(II) salicylate complex in the solution since low potentials (ca. 0 V vs Ag/AgCl). At higher potentials, salicylate decomposition is observed. FTIR spectra show the formation of CO2 in solution, indicating salicylate decarboxilation. The SERS experiments indicate the breakage of the benzenic ring on the surface. It is suggested that at potentials above 0.6 V, a film of insaturated aliphatic chains linked by oxygen atoms is formed on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tallman DE, Spinks G, Dominis A, Walace GG (2002) J Solid State Electrochem 6:73

    CAS  Google Scholar 

  2. Biallozor S, Kupniewska A (2005) Synth Met 155:443

    Article  CAS  Google Scholar 

  3. Hülser H, Beck F (1990) J Appl Electrochem 8:35

    Google Scholar 

  4. Su W, Iroh JO (1997) Electrochim Acta 42:2685

    Article  CAS  Google Scholar 

  5. Bazzaoui M, Martins L, Bazzaoui EA, Martins JI (2002) J Electroanal Chem 537:47

    Article  CAS  Google Scholar 

  6. Bazzaoui M, Martins L, Bazzaoui EA, Martins JI (2002) Electrochim Acta 47:2953

    Article  CAS  Google Scholar 

  7. Cascalheira AC, Aeiyach S, Aubard J, Lacaze PC, Abrantes LM (2004) Russ J Electrochem 40:334

    Article  Google Scholar 

  8. Bazzaoui M, Martins JI, Reis TC, Bazzaoui EA, Nunes MC, Martins L (2005) Thin Solid Films 485:155

    Article  CAS  Google Scholar 

  9. Martins dos Santos LM, Lacroix JC, Chane-Ching KI, Adenier A, Abrantes LM, Lacaze PC (2006) J Electroanal Chem 587:67

    Article  CAS  Google Scholar 

  10. Martins JI, Reis TC, Bazzaoui M, Bazzaoui EA, Martins L (2004) Corros Sci 46:2361

    Article  CAS  Google Scholar 

  11. Zaïd B, Aeiyach S, Lacaze PC, Takenouti H (1998) Electrochim Acta 43:2331

    Article  Google Scholar 

  12. Cascalheira AC, Abrantes LM (2004) Electrochim Acta 49:5023

    Article  CAS  Google Scholar 

  13. Iwasita T, Nart FC (1997) Infrared spectroscopy of electrode surfaces. In: Davison SG (ed) Progress in surface science, vol 55. Pergamon, New York, pp 271–340

    Google Scholar 

  14. Kratochilová K, Hoskovcová I, Jirknovský J, Klima J, Ludvik J (1995) Electrochim Acta 40:2603

    Article  Google Scholar 

  15. Colucci J, Montalvo V, Herneez R, Poullet C (1999) Electrochim Acta 44:2507

    Article  CAS  Google Scholar 

  16. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  17. Otto A, Mrozek I, Grabhorn H, Akkemann W (1992) J Phys Condens Matter 4:1143

    Article  CAS  Google Scholar 

  18. Otto A (1991) J Raman Spectrosc 22:743

    Article  CAS  Google Scholar 

  19. Phillip D, John A, Panicker CY, Varghese HT (2001) Spectrochim Acta Part A Mol Biomol Spectrosc 57:1561

    Article  Google Scholar 

  20. Gao X, Davies JP, Weaver MJ (1990) J Phys Chem 94:6858

    Article  CAS  Google Scholar 

  21. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic raman frequencies of organic compounds. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

Financial suport from FAPESP, CNPq, and CAPES are gratefully aknowledeged. EAB acknowledges the post-doctoral fellowship from FAPESP. The authors acknowledge the Laboratory of Electrochemistry from “Instituto de Química de São Carlos”, especially Prof. T. Iwasita for permitting us to perform the FTIRS experiments in that laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. A. Temperini.

Additional information

This paper is dedicated in memoriam to Prof. Francisco Carlos Nart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, E.A., Temperini, M.L.A. An in situ SERS and FTIRAS study of salicylate interaction with copper electrode. J Solid State Electrochem 11, 1559–1565 (2007). https://doi.org/10.1007/s10008-007-0357-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0357-6

Keywords

Navigation