Skip to main content

Advertisement

Log in

Electrocatalysis of oxygen reduction and hydrogen oxidation in platinum dispersed on tungsten carbide in acid medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Tungsten carbide dispersed on a high surface area carbon (W2C/C) prepared by a sonochemical method was used as the support of a Pt-based electrocatalyst (Pt-W2C/C). The resulting materials were tested for two important reactions with practical interest in fuel cells, that is, the oxygen reduction and hydrogen oxidation reactions, in acid medium. The electrochemical techniques considered were cyclic voltammetry, linear sweep voltammetry, and steady-state polarization curves, obtained utilizing an ultrathin catalyst layer in a rotating ring–disk electrode. The results showed that the Pt-W2C/C catalyst led to a remarkable enhancement of the oxygen reduction in acid medium, when compared to the standard Pt/C, both following a four-electron mechanism. The hydrogen oxidation reaction showed similar kinetics on Pt-W2C/C and Pt/C following the direct discharge mechanism on both catalysts. The W2C/C support presented remarkable activity for the hydrogen oxidation reaction, most probably after the Heyrovsky–Volmer mechanism at low overpotential and the direct discharge irreversible mechanism at high overpotentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Samjeské G, Wang H, Löffler T, Baltruschat H (2002) Electrochim Acta 47:3681

    Article  Google Scholar 

  2. Luna AMC, Câmara GA, Paganin VA, Ticianelli EA, Gonzalez ER (2000) Electrochem Commun 2:222

    Article  CAS  Google Scholar 

  3. Câmara GA, Giz MJ, Paganin VA, Ticianelli EA (2002) J Electroanal Chem 537:21

    Article  Google Scholar 

  4. Santiago EI, Camara GA, Ticianelli EA (2003) Electrochim Acta 48:3527

    Article  CAS  Google Scholar 

  5. Santiago EI, Giz MJ, Ticianelli EA (2003) J Solid State Electrochem 7:607

    Article  CAS  Google Scholar 

  6. Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (ed) Electrocatalysis, chap 5. Wiley-VCH, New York

    Google Scholar 

  7. Gottesfeld S, Zawodzinski TA (1997) In: Alkire RC, Gerischer H, Kolb DM, Tobias CW (eds) Advances in electrochemical science and engineering, chap 4, vol 5. Wiley-VCH, Weinheim

    Google Scholar 

  8. Prakash J, Tryk DA, Aldred W, Yeager EB (1999) J Appl Electrochem 29:1463

    Article  CAS  Google Scholar 

  9. Gojković S Lj, Gupta S, Sanivell RF (1999) Electrochim Acta 45:889

    Article  Google Scholar 

  10. Jiang R, Chu D (2000) J Electrochem Soc 147:4605

    Article  CAS  Google Scholar 

  11. Cote R, Laland G, Faubert G, Guay D, Dodelet JP, Denes G (1998) J New Mater Electrochem Syst 1:7

    CAS  Google Scholar 

  12. Ranhotra GS, Haddix GW, Bell AT, Reimer JA (1987) J Catal 108:24

    Article  CAS  Google Scholar 

  13. Lee JS, Oyama ST, Boudart M (1990) J Catal 125:157

    Article  CAS  Google Scholar 

  14. Ledoux MJ, Pham-Huu C, Guille J, Dunlop H (1992) J Catal 134:383

    Article  CAS  Google Scholar 

  15. Hyeon T, Fang M, Suslick KS (1996) J Am Chem Soc 118:5493

    Article  Google Scholar 

  16. Meng H, Shen PK (2006) Electrochem Commun 8:588

    Article  CAS  Google Scholar 

  17. Yang XG, Wang CY (2005) Appl Phys Lett 86:224104

    Article  CAS  Google Scholar 

  18. Ganesan R, Lee JS (2005) Angew Chem Int Ed 44:6557

    Article  CAS  Google Scholar 

  19. Wang SJ, Chen CH, Chang SC, Uang KM, Juan CP, Cheng HC (2004) Appl Phys Lett 85:20

    Google Scholar 

  20. Pinheiro ALN, Oliveira-Neto A, de Souza EC, Perez J, Paganin VA, Ticianelli EA, Gonzalez ER (2003) J New Mater Electrochem Syst 6:1

    CAS  Google Scholar 

  21. West AR (1984) Solid state chemistry and its applications. Wiley, New York

    Google Scholar 

  22. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 495:134

    Article  CAS  Google Scholar 

  23. Meng H, Shen PK (2005) J Phys Chem B 109:22705

    Article  CAS  Google Scholar 

  24. Paulus UA, Wokaum A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochim Acta 47:3787

    Article  CAS  Google Scholar 

  25. Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) J Phys Chem B 108:11024

    Article  CAS  Google Scholar 

  26. Mo Y, Sarangapani S, Lê A, Scherson DA (2002) J Electroanal Chem 35:538–539

    Google Scholar 

  27. Pereira LGS, Santos FR, Pereira ME, Paganin VA, Ticianelli EA (2006) Electrochim Acta 51:4061

    Article  CAS  Google Scholar 

  28. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K (2004) Electrochim Acta 49:3479

    Article  CAS  Google Scholar 

  29. Antoine O, Durand R (2000) J Appl Electrochem 30:839

    Article  CAS  Google Scholar 

  30. Murthi VS, Urian RC, Mukerjee S (2004) J Phys Chem B 108:11011

    Article  CAS  Google Scholar 

  31. Nie M, Shen PK, Wu M, Wei Z, Meng H (2006) J Power Sources 162:173

    Article  Google Scholar 

  32. Toda T, Igarashi H, Watanabe M (1999) J Electroanal Chem 460:258

    Article  CAS  Google Scholar 

  33. Min M, Cho J, Cho K, Kim H (2000) Electrochim Acta 45:4211

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (1980) In: Electrochemical methods. Wiley, New York, p 283

    Google Scholar 

  35. De Melo RMQ, Ticianelli EA (1996) Electrochim Acta 42:1031

    Article  Google Scholar 

  36. Breiter MW (1969) Electrochemical processes in fuel cells. Springer, New York

    Google Scholar 

  37. Conway BE (1965) Theory and principles of electrode processes. The Ronald Press Company, New York

    Google Scholar 

  38. Harrison JA, Khan ZA (1971) J Electroanal Chem 30:327

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Fundação de Amparo a Pesquisa de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ticianelli.

Additional information

This paper is dedicated to Prof. Francisco Nart, in memoriam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, L.G.R.A., Freitas, K.S. & Ticianelli, E.A. Electrocatalysis of oxygen reduction and hydrogen oxidation in platinum dispersed on tungsten carbide in acid medium. J Solid State Electrochem 11, 1541–1548 (2007). https://doi.org/10.1007/s10008-007-0350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0350-0

Keywords

Navigation