Layer-by-layer deposition of open-pore mesoporous TiO2-Nafion® film electrodes

Abstract

The formation of variable thickness TiO2 nanoparticle-Nafion® composite films with open pores is demonstrated via a layer-by-layer deposition process. Films of about 6 nm diameter TiO2 nanoparticles grow in the presence of Nafion® by “clustering” of nanoparticles into bigger aggregates, and the resulting hierarchical structure thickens with about 25 nm per deposition cycle. Film growth is characterized by electron microscopy, atomic force microscopy, and quartz crystal microbalance techniques. Simultaneous small-angle X-ray scattering and wide-angle X-ray scattering measurements for films before and after calcination demonstrate the effect of Nafion® binder causing aggregation. Electrochemical methods are employed to characterize the electrical conductivity and diffusivity of charge through the TiO2-Nafion® composite films. Characteristic electrochemical responses are observed for cationic redox systems (diheptylviologen2+/+, \({\text{Ru}}{\left( {{\text{NH}}_{3} } \right)}^{{3 + /2 + }}_{6} \), and ferrocenylmethyl-trimethylammonium2+/+) immobilized into the TiO2-Nafion® nanocomposite material. Charge conduction is dependent on the type of redox system and is proposed to occur either via direct conduction through the TiO2 backbone (at sufficiently negative potentials) or via redox-center-based diffusion/electron hopping (at more positive potentials).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Varghese OK, Grimes CA (2003) J Nanosci Nanotech 3:277

    Article  CAS  Google Scholar 

  2. 2.

    Grätzel M (2005) MRS Bull 30:23

    Google Scholar 

  3. 3.

    Schuth F (2005) Ann Rev Mater Res 35:209

    Article  CAS  Google Scholar 

  4. 4.

    Diebold U (2003) Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  5. 5.

    Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) J Phys Chem B 108:8106

    Article  CAS  Google Scholar 

  6. 6.

    Bavykin DV, Milsom EV, Marken F, Kim DH, Marsh DH, Riley DJ, Walsh FC, El-Abiary KH, Lapkin AA (2005) Electrochem Commun 7:1050

    Article  CAS  Google Scholar 

  7. 7.

    Bockmeyer M, Lobmann P (2006) Chem Mater 18:4478

    Article  CAS  Google Scholar 

  8. 8.

    Cameron PJ, Peter LM, Hore S (2005) J Phys Chem B 109:930

    Article  CAS  Google Scholar 

  9. 9.

    Ma TL, Kida T, Akiyama M, Inoue K, Tsunematsu SJ, Yao K, Noma H, Abe E (2003) Electrochem Commun 5:369

    Article  CAS  Google Scholar 

  10. 10.

    McKenzie KJ, King PM, Marken F, Gardner CE, Macpherson JV (2005) J Electroanal Chem 579:267

    Article  CAS  Google Scholar 

  11. 11.

    Stott SJ, Mortimer RJ, McKenzie KJ, Marken F (2005) Analyst 130:358

    Article  CAS  Google Scholar 

  12. 12.

    Decher G, Schlenoff (2003) Multilayer thin films. Wiley, Weinheim

    Google Scholar 

  13. 13.

    McKenzie KJ, Marken F, Hyde M, Compton RG (2002) New J Chem 26:625

    Article  CAS  Google Scholar 

  14. 14.

    Murphy MA, Wilcox GD, Dahm RH, Marken F (2005) Ind J Chem A 44:924

    Article  CAS  Google Scholar 

  15. 15.

    Milsom EV, Novak J, Oyama M, Marken F (2007) Electrochem Commun 9:436

  16. 16.

    Correa-Duarte MA, Gierig M, Kotov NA, Liz-Marzan LM (1998) Langmuir 14:6430

    Article  CAS  Google Scholar 

  17. 17.

    Neivandt DJ, Gee M, Tripp CP, Hair ML (1997) Langmuir 13:2519

    Article  CAS  Google Scholar 

  18. 18.

    Serizawa T, Yamamoto K, Akashi M (1999) Langmuir 15:4682

    Article  CAS  Google Scholar 

  19. 19.

    Davis TA, Genders JD, Pletcher D (1997) Ion permeable membranes. The Electrochemical Consultancy, Romsey, UK

    Google Scholar 

  20. 20.

    Shao ZG, Xu H, Li M, Hsing IM (2006) Solid State Ionics 177:779

    Article  CAS  Google Scholar 

  21. 21.

    Chalkova E, Fedkin MV, Wesolowski DJ, Lvov SN (2005) J Electrochem Soc 152:A1742

    Article  CAS  Google Scholar 

  22. 22.

    Park H, Choi W (2006) Langmuir 22:2906

    Article  CAS  Google Scholar 

  23. 23.

    Park H, Choi W (2005) J Phys Chem B 109:11667

    Article  CAS  Google Scholar 

  24. 24.

    Yuan S, Hu S (2004) Electrochim Acta 49:4287

    Article  CAS  Google Scholar 

  25. 25.

    Wang Y, Li C, Hu S (2006) J Solid State Electrochem 10:383

    Article  CAS  Google Scholar 

  26. 26.

    Bertoncello P, Notargiacomo A, Nicolini C (2005) Langmuir 21:172

    Article  CAS  Google Scholar 

  27. 27.

    Ward MD (1995) Physical electrochemistry. In: Rubinstein I (ed) Marcel Dekker, New York, p 297

    Google Scholar 

  28. 28.

    Buttry DA, Anson FC (1982) J Am Chem Soc 104:4824

    Article  CAS  Google Scholar 

  29. 29.

    Mortimer RJ (1995) J Electroanal Chem 397:79

    Article  Google Scholar 

  30. 30.

    Farhat TR, Hammond PT (2006) Adv Func Mater 16:433

    Article  CAS  Google Scholar 

  31. 31.

    McKenzie KJ, Marken F (2003) Langmuir 19:4327

    Article  CAS  Google Scholar 

  32. 32.

    Marken F, Bhambra AS, Kim DH, Mortimer RJ, Stott SJ (2004) Electrochem Commun 6:1153

    Article  CAS  Google Scholar 

  33. 33.

    Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Bisquert J (2003) J Phys Chem B 107:758

    Article  CAS  Google Scholar 

  34. 34.

    Mortimer RJ, Dillingham JL (1997) J Electroanal Chem 144:1549

    CAS  Google Scholar 

  35. 35.

    Milson E, Perrott HR, Peter LM, Marken F (2005) Langmuir 21:9482

    Article  CAS  Google Scholar 

  36. 36.

    Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, p 591

    Google Scholar 

  37. 37.

    Scholz F (2002) Electroanalytical methods. Springer, Berlin Heidelberg New York, p 64

    Google Scholar 

  38. 38.

    Majda M (1992) Molecular design of electrode surfaces In: Murray R (ed) Wiley, New York, p 200

    Google Scholar 

  39. 39.

    Buttry DA, Anson FC (1983) J Am Chem Soc 105:685

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Tayca Corporation is acknowledged for providing a sample of TiO2 colloidal solution. E.V.M. and S.J.S. are grateful for studentships awarded by the EPSRC and Royal Society of Chemistry. We acknowledge PANalytical for the generous provision of a SAXSess system used in the SAXS measurements included in this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank Marken.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milsom, E.V., Novak, J., Green, S.J. et al. Layer-by-layer deposition of open-pore mesoporous TiO2-Nafion® film electrodes. J Solid State Electrochem 11, 1109 (2007). https://doi.org/10.1007/s10008-006-0247-3

Download citation

Keywords

  • Voltammetry
  • TiO2
  • Nafion®
  • Electron hopping
  • Sensor
  • Mesoporous film
  • Photoelectrochemistry
  • Electrode