Skip to main content
Log in

Simulation of oxygen evolution reaction at porous anode from flowing electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Oxygen evolution reaction (OER) at flow-through porous anode was simulated with the aid of a mathematical model. The OER was assumed to be the only reaction that takes place at the electrode. The model accounts for effects of the kinetics, ohmic, hydrodynamics, and structural parameters and bubble formation on the potential and current distributions within the electrode and on the overall performance of the electrode. The latter was evaluated via interpretation of the polarization curves of the OER at the porous anode. The model results were discussed in the light of some controlling dimensionless groups. The conductivities of both the electrolyte and the solid matrix have dramatic effects on the general behavior of the porous anode, and lower performance of the electrode was observed when both and/or one of them have limited conductivity values. The electrode potential, and hence the power required to attain a specific current (rate), is highly dependent on the degree of bubble formation within the bed matrix. The model predictions were compared with collected experimental data of OER from flowing sulfuric acid solution at Pt-loaded reticulated vitreous carbon. Good agreements were obtained at the employed experimental conditions. The present work helped to understand the anode performance for further application for simultaneous gas evolution, e.g., O2 and O3 gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Devan S, Subramanian VR, White RE (2004) J Electrochem Soc 151:A905

    Article  CAS  Google Scholar 

  2. Du CY, Cheng XQ, Yang T, Yin GP, Shi PF (2005) Electrochem Commun 7:1411

    Article  CAS  Google Scholar 

  3. Pilone D, Kelsall GH (2006) J Electrochem Soc 153:D85

    Article  CAS  Google Scholar 

  4. Friedrich JM, Ponce-de-Leon CG, Reads W, Walsh FC (2004) J Electroanal Chem 151:203

    Article  Google Scholar 

  5. Yu H, Scott K (2004) Electrochem Commun 6:361

    Article  CAS  Google Scholar 

  6. Saleh MM (1999) Electrochim Acta 45:959

    Article  CAS  Google Scholar 

  7. Dukovic J, Tobias CW (1987) J Electrochem Soc 134:331

    Article  CAS  Google Scholar 

  8. Gorodetskii VV, Russ (2003) J Electrochem Soc 39:650

    CAS  Google Scholar 

  9. Kraft A, Stadelmann M, Wunsche M, Blaschke M (2006) Electrochem Commun 8:883

    Article  CAS  Google Scholar 

  10. Fujimura K, Izumiy K, Kawashima A, Akiuama E, Habazaki E, Kumagai N (1999) J Appl Electrochem 29:765

    Article  CAS  Google Scholar 

  11. Pilalla AS, Cobo EO, Duarte ME, Salinas DR (1997) J Appl Electrochem 27:1283

    Article  Google Scholar 

  12. Santana MHP, Silva LMD, De Faria LA, Boodts JFC (2003) Electrochim Acta 49:1935

    Google Scholar 

  13. Comninellis C, Vercesi GP (1991) J Appl Electrochem 21:335

    Article  CAS  Google Scholar 

  14. Tatapudi P, Fenton JM (1994) J Electrochem Soc 141:1174

    Article  CAS  Google Scholar 

  15. Wang YH, Cheng S, Chan K, Li XY (2005) J Electrochem Soc 152:D197

    Article  Google Scholar 

  16. Saleh MM, Awad MI, Ohsaka T (2006) Electrochim Acta 51:6331

  17. Huet F, Musiani M, Nogueira RP (2004) J Solid State Electrochem 8:786

    Article  CAS  Google Scholar 

  18. Heidrich H, Muller L, Polovchenko BI (1990) J Appl Electrochem 20:686

    Article  CAS  Google Scholar 

  19. Waraksa CC, Chen G, Macdonald DD (2003) J Electrochem Soc 150:E429

    Article  CAS  Google Scholar 

  20. Ateya GB, El-Anadouli B (1991) J Electrochem Soc 138:1331

    Article  CAS  Google Scholar 

  21. Saleh MM, Weidner JW, Ateya BG (1995) J Electrochem Soc 142:4113

    Article  CAS  Google Scholar 

  22. Silva LMD, Franco DV, Forti JC, Jardim WF, Boodts JFC (2006) J Appl Electrochem 36:523

    Article  Google Scholar 

  23. Katsuki N, Takahashi E, Toyoda M, Kurosu T, Lida M, J Electrochem Soc 145:2358

  24. Duan T, Weidner JW, White RE (2002) J Power Sources 107:24

    Article  CAS  Google Scholar 

  25. Pavlov P, Monahov B (1996) J Electrochem Soc 143:3616

    Article  CAS  Google Scholar 

  26. Silva LMD, De Faria LA, Boodts JFC (2003) Electrochim Acta 48:699

    Article  Google Scholar 

  27. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York, p 96

    Google Scholar 

  28. Devan S, Subramanian VR, White RE (2004) J Electrochem Soc 151:A905

    Article  CAS  Google Scholar 

  29. Meredith RE, Tobias CW (1962) In: Gerischer H, Tobias CW (eds) Conduction in heterogeneous systems. Advances in electrochemistry and electrochemical engineering, vol 2. Wiley, New York, pp 17–48

    Google Scholar 

  30. Doherty T, Sunderland JG, Roberts EPL, Pickett DJ (1996) Electrochim Acta 41:519

    Article  CAS  Google Scholar 

  31. Newman J (1991) Electrochemical systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ, p 552

    Google Scholar 

  32. Alkire R, Gracon B (1975) J Electrochem Soc 122:1594

    Article  CAS  Google Scholar 

  33. Trainham JA, Newman J (1977) J Electrochem Soc 124:1528

    Article  CAS  Google Scholar 

  34. Saleh MM (2004) J Phys Chem B 108:13419

    Article  CAS  Google Scholar 

  35. Trainham JA, Newman J (1978) J Electrochem Soc 125:58

    Article  CAS  Google Scholar 

  36. Cheng CY, Kelsall GH, Pilone D (2005) J Appl Electrochem 35:1191

    Article  CAS  Google Scholar 

  37. Dobos D (1975) Electrochemical data. Elsevier, New York, p 512

    Google Scholar 

  38. Jiang J, Yi B (2005) J Electroanal Chem 577:107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, M.M. Simulation of oxygen evolution reaction at porous anode from flowing electrolytes. J Solid State Electrochem 11, 811–820 (2007). https://doi.org/10.1007/s10008-006-0227-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0227-7

Keywords

Navigation