Skip to main content
Log in

Electrochemical deposition of ternary and binary systems from an alkaline electrolyte—a demanding way for manufacturing p-doped bismuth and antimony tellurides for the use in thermoelectric elements

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Alkaline solution, especially diphosphate solutions, can be used as electrolytes for the galvanic deposition of p-type semiconductors. A ternary Bi–Sb–Te alloy semiconductor was deposited at a Ni-covered cathode surface at potentials lower than −0.6 V (Ag/AgCl), under potentiostatic condition in well-stirred solutions. Additionally, it was possible to deposit antimony telluride, a binary p-semiconductor, from the ternary electrolyte. The kinetics of the process was investigated by cyclic voltammetric measurements. The influence of the electrolyte convection on the electrocrystallization was analysed with the help of rotating disc electrode. The semiconductor layers were characterized by electrochemical impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Boulouz A, Charkrabarty S, Giani A (2001) J Appl Phys 89:5009

    Article  CAS  Google Scholar 

  2. Tittes K, Plieth W, Plötner M, Qu W, Fischer WJ (2001) Mikrogalvanische Abscheidung thermoelektrisch aktiver Verbindungen für die Anwendung als Spannungsversorgung in autarken Mikrosystemen Abschlussbericht AiF-Projekt Nr. 12118BR, TU Dresden

  3. Fleurial JP, Herman AJ, Snyder GJ, Ryan MA, Borshchevsky A, Huang CK (2000) Mater Res Soc Symp Proc 626:Z11.3.1

    Google Scholar 

  4. Stecker A, Stordeur M, Langhammer HT (1986) In: Unger K, Schneider HG (eds) Verbindungshalbleiter. Akademische Verlagsgesellschaft Geest & Portig KG, Leipzig, p 333

    Google Scholar 

  5. Leimkühler G, Kerkamm I (2002) J Electrochem Soc 149(10):C474

    Article  Google Scholar 

  6. Prieto AL, Martin-Gonzales M, Keyani (2003) J Am Chem Soc 125:2388

    Article  CAS  Google Scholar 

  7. Martin-Gonzales M, Prieto AL (2003) Chem Mater 15:1676

    Article  Google Scholar 

  8. Vereecken PM, Ren S, Sun L, Searson PL (2003) J Electrochem Soc 150(3):C131

    Article  CAS  Google Scholar 

  9. Fleurial JP, Borshchevsky A, Ryan MA (1999) Mater Res Soc Symp Proc 545:493

    CAS  Google Scholar 

  10. Martin-Gonzales M, Prieto AL (2003) Adv Mater 5(12):1003

    Article  Google Scholar 

  11. Snyder GJ, Lim J, Huang CK, Fleurial JP (2003) Nat Mat 2:528

    Article  CAS  Google Scholar 

  12. Kotschman ED, Gamer PU (1978) Zashita Metallov 16:493

    Google Scholar 

  13. Anonym (1982) Met Finish 80:31

  14. Campell F, Fraunhofer JA (1976) Surf Technol 4:303

    Article  Google Scholar 

  15. McCarthy JA (1963) Met Finish 61:58

    Google Scholar 

  16. Mahr C (1933) Z Analyt Chemie 94:161

    Article  CAS  Google Scholar 

  17. Mahr C (1934) Z Analyt Chemie 97:96

    Article  CAS  Google Scholar 

  18. Schulze G, Herrmann J (1989) Jander–Jahr Maßanalyse 15. Auflage Walter de Gryter, Berlin, p 181

  19. Autorenkollektiv (1974) Lehrwerk Chemie-Arbeitsbuch 5 Elektrolytgleichgewichte und Elektrochemie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, p 111

  20. Lenher V, Wakefield HF (1923) J Am Chem Soc 45:1423

    Article  CAS  Google Scholar 

  21. Lang R, Faude E (1937) Z Analyt Chemie 108:260

    Google Scholar 

  22. Haase HJ (1996) Elektrochemische stripping-analyse, VCH Verlagsgesellschaft mbH, Weinheim

  23. Maclachlan JB, Kruesi WH, Fray DJ (1992) J Mater Sci 27(15):4223

    Article  CAS  Google Scholar 

  24. Gileadi E (1993) Electrode kinetics for chemists, chemical engineers, and material scientists. VCH Inc., New York

    Google Scholar 

  25. Vijakumar A, Du T, Sundaram KB (2005) Appl Surf Sci 242:168

    Article  Google Scholar 

  26. Black MR, Lin YM, Cronin SB, Rabin O, Dresselhaus MS (2001) Studies of the dielectric constant of thin film Bi nanowire samples using optical reflectometry in anisotropic nanoparticles: synthesis, characterization and applications. In: Stranik S et al (eds) MRS symposium proceedings, Boston, Dec. 2000, Mat Res Soc Press, Pittsburgh, Pennsylvania

Download references

Acknowledgements

This study was supported by the BMWi (Bundesministerium für Wirtschaft) and the AiF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e. V.) research no. 13936 BR. The authors are grateful to Dr. M. Stölzer (Physical Department of the Martin Luther University, Halle, Germany) for the preparation of the Bi–Sb–Te reference samples and Dr. C. Blank (Institute of Material Science of the Technical University Dresden, Germany) for carrying out of optical microscopy and the excellent Sb2Te3 layer on substrate preparation for SEM. The wafer material was supplied by Semiconductor Technology and Microsystems Laboratory, Technical University Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Tittes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tittes, K., Plieth, W. Electrochemical deposition of ternary and binary systems from an alkaline electrolyte—a demanding way for manufacturing p-doped bismuth and antimony tellurides for the use in thermoelectric elements. J Solid State Electrochem 11, 155–164 (2007). https://doi.org/10.1007/s10008-006-0217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0217-9

Keywords

Navigation