Skip to main content
Log in

A new SERS-active sandwich structure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report surface-enhanced Raman scattering (SERS) from a “sandwich” structure of two silver layers, in which a thin film of activated carbon is embedded. The first silver layer is prepared by electroless deposition on a non-conductive substrate, while the second one is electrodeposited on the adsorbed carbon powder. This “sandwich” does not only yield stable SERS signals from the carbon but also a strong additional enhancement (compared to SERS from simple carbon/silver or silver/carbon structures), stemming from a coupling of the two silver layers. The “sandwich” structure should be widely applicable since its preparation is very simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQiullan AM (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  2. Mulvaney SP, Keating CD (2000) Anal Chem 72:145R

    Article  CAS  Google Scholar 

  3. Campion A, Kambhampati P (1998) Chem Soc Rev 27:241

    Article  CAS  Google Scholar 

  4. Duesberg GS, Blau WJ, Byrne HJ, Muster J, Burghard M, Roth S (1999) Chem Phys Lett 310:8

    Article  CAS  Google Scholar 

  5. Keating CD, Kovaleski KK, Natan MJ (1998) J Phys Chem B 102:9404

    Article  CAS  Google Scholar 

  6. Liang EJ, Yang Y, Kiefer W (1999) Spectrosc Lett 32:689

    Article  CAS  Google Scholar 

  7. Petersen P, Krasser W (1996) Appl Surf Sci 103:91

    Article  CAS  Google Scholar 

  8. Nie S, Emory SR (1997) Science 275:1102

    Article  CAS  Google Scholar 

  9. Doering WE, Nie S (2002) J Phys Chem B 106:311

    Article  CAS  Google Scholar 

  10. Kneipp K, Wang Y, Kneip H, Perelman LT, Itzkan I, Dasari RR, Feld M (1997) Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  11. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1

    Article  CAS  Google Scholar 

  12. Albrecht MG, Creighton GA (1977) J Am Chem Soc 99:5215

    Article  CAS  Google Scholar 

  13. Michaels AM, Jiang J, Brus L (2000) J Phys Chem B 104:11965

    Article  CAS  Google Scholar 

  14. Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964

    Article  CAS  Google Scholar 

  15. Mrozek MF, Wasileski SA, Weaver MJ (2001) J Am Chem Soc 123:12817

    Article  CAS  Google Scholar 

  16. Alsmeyer YW, McCreery RL (1991) Anal Chem 63:1289

    Article  CAS  Google Scholar 

  17. Lee PC, Melsel D (1982) J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  18. Schlegel VL, Cotton TM (1991) Anal Chem 63:241

    Article  CAS  Google Scholar 

  19. Lee SJ, Kim K (2003) Chem Commun 212

  20. Ni F, Cotton TM (1986) Anal Chem 58:3159

    Article  CAS  Google Scholar 

  21. Leopold N, Lendl B (2003) J Phys Chem B 107:5723

    Article  CAS  Google Scholar 

  22. Saito Y, Wang JJ, Smith DA, Batchelder DN (2002) Langmuir 18:2959

    Article  CAS  Google Scholar 

  23. Bittner A, Wanner M, Weil KG (1992) Ber Bunsenges Phys Chem 96:647

    CAS  Google Scholar 

  24. Roy D, Barber ZH, Clyne TW (2002) J Appl Phys 91:6085

    Article  CAS  Google Scholar 

  25. Lopez-Rios T (1996) Diamond and Related Materials 5:608

    Article  CAS  Google Scholar 

  26. Keating CD, Kovaleski KK, Natan MJ (1998) J Phys Chem B 102:9414

    Article  CAS  Google Scholar 

  27. Yu H, Zhang J, Zhang H, Liu Z (1999) Langmuir 15:16

    Article  CAS  Google Scholar 

  28. Zheng J, Zhou Y, Li X, Lu T, Gu R (2003) Langmuir 19:632

    Article  CAS  Google Scholar 

  29. Li H, Cullum BM (2005) Appl Spectrosc 59:410

    Article  CAS  Google Scholar 

  30. Mulvaney SP, He L, Natan MJ, Keating CD (2003) J Raman Spectrosc 34:163

    Article  CAS  Google Scholar 

  31. Zoval JV, Biermacki PR, Penner RM (1996) Anal Chem 68:1585

    Article  CAS  Google Scholar 

  32. Siu GG, Liu Y, Xie S, Xu J, Li T, Xu L (1996) Thin Solid Films 274:147

    Article  CAS  Google Scholar 

  33. Corio P, Brown SDM, Marucci A, Pimenta MA, Kneipp K, Dresselhaus G, Dresselhaus MS (2000) Phys Rev B 61:13202

    Article  CAS  Google Scholar 

  34. Itoh T, Abe K, Mahamedi M, Nishizawa M, Uchida I (2001) J Solid State Electrochem 5:328

    Article  CAS  Google Scholar 

  35. Mews A, Koberling F, Basché T, Philipp G, Duesberg GS, Roth S, Burghard M (2000) Adv Mater 12:1210

    Article  CAS  Google Scholar 

  36. Pocsik I, Hundhausen M, Koos M, Ley L (1998) J Non-cryst Solids 1083:227–230

    Google Scholar 

  37. Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M (1999) Phys Rev B 59:6585

    Article  Google Scholar 

  38. Ilie A, Durkan C, Milne WI, Welland ME (2002) Phys Rev B 66:045412

    Article  CAS  Google Scholar 

  39. Garcia-Vidal FJ, Pendry JB (1996) Phys Rev Lett 77:1163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Annette Fuchs for preparing the SEM micrograph and Manxi Zhu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongan Yang or Alexander M. Bittner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Bittner, A.M. & Kern, K. A new SERS-active sandwich structure. J Solid State Electrochem 11, 150–154 (2007). https://doi.org/10.1007/s10008-006-0214-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0214-z

Keywords

Navigation