Skip to main content
Log in

Influence of bath composition and deposition parameters on nanostructure and thermal stability of gold

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline gold is electrodeposited from a stable nontoxic bath, in which Au+ is stabilized by complex formation with 3-mercapto-1-propanesulfonic acid sodium salt. Nanoscaling is achieved by pulse techniques. The crystallite size is strongly dependent on physical and chemical process parameters, such as pulse duration, current density, bath temperature, type, and amount of additives; especially, we observe a decrease of the crystallite size down to 16 nm by the proper choice of current density and temperature, and down to 7 nm by the use of additives. The thermal stability of nanocrystalline gold is investigated by in situ high-temperature X-ray diffraction; nanogold exhibits a thermal stability up to 673 K. An activation energy of 37 kJ mol−1 is determined for the grain-growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Popov KI, Pavlovic MG (1993) Mod Aspects Electrochem 24:299

    CAS  Google Scholar 

  2. Robertson A, Erb U, Palumbo G (1999) Nanostruct Mater 12:1035

    Article  Google Scholar 

  3. Natter H, Hempelmann R (2003) Electrochim Acta 49:51

    Article  CAS  Google Scholar 

  4. Dinan TE, Cheh HY (1992) J Electrochem Soc 139:2

    Article  Google Scholar 

  5. Harman GG (1991) Reliability and yield problems of wire bonding in microelectronics. ISHM, Reston

    Google Scholar 

  6. http://www.palomartechnologies.com/resources/whitepapers/makingconnection.htm

  7. Li YG, Lasia A (1997) J Electrochem Soc 144:6

    Article  Google Scholar 

  8. Osaka T, Kodera A, Misato T, Homma T, Okinaka Y (1997) J Electrochem Soc 144:10

    Google Scholar 

  9. Green TA, Liew MJ, Roy S (2003) J Electrochem Soc 150:3

    Article  Google Scholar 

  10. Simon F (2000) Galvanotechnik 54:10

    Google Scholar 

  11. Puippe JC, Leaman F (eds) (1986) Theory and practise of pulse plating, Amer Electroplaters Soc, Florida

  12. Bockris JO’M, Razumney GA (1967) Fundamental aspects of electrocrystallization. Plenum, New York

    Google Scholar 

  13. Kashchiev D (2000) Nucleation basic theory with applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  14. Budevski, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, Weinheim

    Google Scholar 

  15. Warren BE, Averbach LE (1950) J Appl Phys 21:536

    Article  Google Scholar 

  16. Warren BE, Averbach LE (1952) J Appl Phys 23:497

    Article  CAS  Google Scholar 

  17. Warren BE (1990) X-ray diffraction. Dover, New York

    Google Scholar 

  18. Natter H, Hempelmann R (1996) J Phys Chem 100:19525

    Article  CAS  Google Scholar 

  19. Natter H, Schmelzer M, Loffler MS, Krill CE, Fitch A, Hempelmann R (2000) J Phys Chem 104:2467

    CAS  Google Scholar 

  20. Holleman-Wiberg (1985) Lehrbuch der Anorganischen Chemie. Walter de Gruyter, Berlin

  21. Lin K, Weil R (1986) J Electrochem Soc 133:4

    Google Scholar 

  22. Shunk FA (1969) Constitution of binary alloys, second supplement. McGraw-Hill, New York

    Google Scholar 

  23. http://ecsmeet2.peerx-press.org/ms_files/ecsmeet2/2005/05/27/00009260/00/9260_0_art_file_0_1117206052.pdf

  24. Carotenuto G, Nicolais L (2003) J Mater Chem 13

  25. Michels A, Krill CE, Erhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143

    Article  CAS  Google Scholar 

  26. Landolt-Boernstein (1990) Numerical data and functional relationships in science and technology. Springer, Berlin Heidelberg New York, p. 640

Download references

Acknowledgments

The present work is initiated and performed at the Universität des Saarlandes (Germany) in the framework of the Sonderforschungsbereich 277 (Grenzflächenbestimmte Materialien). For experimental assistance, we thank S. Kuhn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hempelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yevtushenko, O., Natter, H. & Hempelmann, R. Influence of bath composition and deposition parameters on nanostructure and thermal stability of gold. J Solid State Electrochem 11, 138–143 (2007). https://doi.org/10.1007/s10008-006-0212-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0212-1

Keywords

Navigation