Skip to main content
Log in

Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Self-doped polyaniline (PAN) film on platinum electrode surface has been synthesized via electrochemical copolymerization of aniline with orthanilic acid (OAA). Fourier transform infrared, UV–Vis, and elemental analysis indicate the formation of the copolymer and that the copolymer has the structure of a head-to-tail coupling of aniline and OAA units. It was found that the internal doping of PAN with OAA can extend the electroactivity of PAN in neutral and even in alkaline media. The obtained self-doped PAN (PAN-OAA)-coated platinum electrode is shown to be a good surface for the electrooxidation of ascorbic acid (AA) in phosphate buffer solution of pH 7. The anode peak potential of AA shifts from 0.63 V at bare platinum electrode to 0.34 V at the PAN-OAA-modified platinum electrode with greatly enhanced current response. A linear calibration graph is obtained over the AA concentration range of 5–60 mM using cyclic voltammetry. Rotating disk electrode voltammetry and chronoamperometry have been employed to investigate the electrooxidation of AA. The PAN-OAA-modified platinum electrode shows good stability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MacDiarmid AG, Mu S, Somasiri NLD, Wu W (1985) Mol Cryst Liq Cryst 121:187–190

    CAS  Google Scholar 

  2. Mu S, Ye J, Wang Y (1993) J Power Sources 45:153–159

    Article  CAS  Google Scholar 

  3. Oyama N, Tatsuma T, Sato T, Sotomura T (1995) Nature 373:598–600

    Article  CAS  Google Scholar 

  4. Kanungo M, Kumar A, Contractor AQ (2003) Anal Chem 75:5673–5679

    Article  CAS  Google Scholar 

  5. Bartlett PN, Wallace ENK (2001) Phys Chem Chem Phys 3:1491–1496

    Article  CAS  Google Scholar 

  6. Karyakin AA, Vuki M, Lukachove LV, Karyakina EE, Orlov AV, Karpachova GP, Wang J (1999) Anal Chem 71:2534–2540

    Article  CAS  Google Scholar 

  7. Rajendra Prasad K, Munichandraiah N (2002) Anal Chem 74:5531–5537

    Article  Google Scholar 

  8. Zhou D, Xu J, Chen H, Fang H (1997) Electroanalysis 9:1185–1188

    Article  CAS  Google Scholar 

  9. Mandi Z, Dui L (1996) J Electroanal Chem 403:133–141

    Article  Google Scholar 

  10. Kazarinov VE, Andreev VN, Spitsyn MA, Mayorov AP (1990) Electrochim Acta 35:1459–1463

    Article  CAS  Google Scholar 

  11. Huang WS, Humphrey BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans 82:2385–2400

    Article  CAS  Google Scholar 

  12. Wei X, Epstein AJ (1995) Synth Met 74:123–125

    Article  CAS  Google Scholar 

  13. Lin HK, Chen SA (2000) Macromolecules 33:8117–8118

    Article  CAS  Google Scholar 

  14. Kayakin AA, Strakhova AK, Yatsimirsky AK (1994) J Electroanal Chem 371:259–265

    Article  Google Scholar 

  15. Karyakin AA, Maltsev IA, Lukachova LV (1996) J Electroanal Chem 402:217–219

    Article  Google Scholar 

  16. Mažeikienė R, Niaura G, Malinauskas A (2003) Synth Met 139:89–94

    Article  Google Scholar 

  17. Mu S, Kan J (2002) Synth Met 132:29–33

    Article  CAS  Google Scholar 

  18. Tian S, Liu J, Zhu T, Knoll W (2003) Chem Commun 21:2738–2739

    Article  Google Scholar 

  19. Xiao Y, Kharitonov AB, Patolsky F, Weizmann Y, Willner I (2003) Chem Commun 13:1540–1541

    Article  Google Scholar 

  20. Cao Y, Smith P, Heeger AJ (1992) Synth Met 48:91–97

    Article  CAS  Google Scholar 

  21. Cao Y, Qiu J, Smith P (1995) Synth Met 69:187–190

    Article  CAS  Google Scholar 

  22. Lukachova LV, Shkerin EA, Puganova EA, Karyakina EE, Kiseleva SG, Orlov AV, Karpacheva GP, Karyakin AA (2003) J Electroanal Chem 544:59–63

    Article  CAS  Google Scholar 

  23. Martin DW Jr (1983) In: Martin DW Jr, Mayes PA, Rodwell VW (eds) Harper’s review of biochemistry, 19th edn. Lange, Los Altos, CA, p 112

    Google Scholar 

  24. Koshiishi I, Imanari T (1997) Anal Chem 69:216–220

    Article  CAS  Google Scholar 

  25. Chihiro Ueda, Daniel Chi-Sing Tse, Theodore Kuwana (1982) Anal Chem 54:850–856

    Google Scholar 

  26. Murthy ASN, Anita (1994) Biosens Bioelectron 9:439–444

    Article  CAS  Google Scholar 

  27. Pournaghi-Azar MH, Razmi-Nerbin H (2000) J Electroanal Chem 488:17–24

    Article  CAS  Google Scholar 

  28. Zhang L, Sun Y, Lin X (2001) Analyst 126:1760–1763

    Article  CAS  Google Scholar 

  29. Zhang L, Lin X (2001) Analyst 126:367–370

    Article  CAS  Google Scholar 

  30. Zhang L, Jia J, Zou X, Dong S (2004) Electroanalysis 16:1416–1418

    Google Scholar 

  31. Mao H, Pickup PG (1989) J Electroanal Chem 265:127–142

    Article  CAS  Google Scholar 

  32. Lyons MEG, Breen W, Cassidy J (1991) J Chem Soc, Faraday Trans 87:115–123

    Article  CAS  Google Scholar 

  33. Xu J, Zhou D, Chen H (1998) Fresenius J Anal Chem 362:234

    Article  CAS  Google Scholar 

  34. Cao Y, Li S, Xue Z, Guo D (1986) Synth Met 16:305–315

    Article  Google Scholar 

  35. Chiang JC, Macdiarmid AG (1986) Synth Met 13:193

    Article  CAS  Google Scholar 

  36. Conley R (1972) Infrared Spectrocopy, 2nd edn. Allyn and Bacon, Boston, MA, pp 196–198

    Google Scholar 

  37. Lee JY, Cui CQ, Su XH (1993) J Electroanal Chem 360:177–187

    Article  CAS  Google Scholar 

  38. Mav I, Zigon M, Sebenik A (1999) Synth Met 101:717–718

    Article  CAS  Google Scholar 

  39. Fan J, Wan M, Zhu D (1998) J Polym Sci Part A: Polym Chem 36:3013–3019

    Article  CAS  Google Scholar 

  40. Yue J, Epstein AJ (1990) J Am Chem Soc 112:2800–2801

    Article  CAS  Google Scholar 

  41. Yue J, Wang ZH, Cromack KR, Epstein AJ, Macdimard AG (1991) J Am Chem Soc 113:2665–2671

    Article  CAS  Google Scholar 

  42. Wei X, Wang Y, Long S, Bobeezko C, Epstein AJ (1996) J Am Chem Soc 118:2545–2555

    Article  CAS  Google Scholar 

  43. Lapkowski M (1990) Synth Met 35:169–182

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, p 288 (Chapter 8)

    Google Scholar 

  45. Andrieux CP, Dumas-Bouchiat JM, Savéant JM (1982) J Electroanal Chem 131:1–35

    Article  CAS  Google Scholar 

  46. Karabinas P, Jannakoudakis D (1984) J Electroanal Chem 160:159–167

    Article  CAS  Google Scholar 

  47. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, p 143 (Chapter 5)

    Google Scholar 

  48. Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood, New York, p 313 (Chapter 10)

    Google Scholar 

Download references

Acknowledgements

I wish to acknowledge the financial support of this paper by Shanghai Leading Academic Discipline Project (T0402), Shanghai Municipal Education Commission (05DZ16), and Shanghai Normal University (PL507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L. Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid. J Solid State Electrochem 11, 365–371 (2007). https://doi.org/10.1007/s10008-006-0151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0151-x

Keywords

Navigation