Skip to main content
Log in

Influence of the cathodic polarization on the stability of Ti surface in concentrated KOH solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The stability of spontaneous thin layers and thin layers formed upon cathodical polarization of Ti in KOH solutions have been studied by potentiostatic and ellipsometric methods. At open circuit potential (OCP) the strongly adherent films, whose thickness depends on the concentration of the KOH solution, were formed. During the cathodic polarization the transformation of these films to weakly adsorbed precipitated layers on the electrode surface was observed. Comparing the theoretically computed curves with the experimental Ψ vs Δ loci measured ellipsometrically, the complex indices of refraction and the thickness of the generated films, from 3.6 to 60 nm in 1 M KOH and from 36 to 105 nm in 5 M KOH (adherent to the electrode surface), were determined. At OCP the rate of film growth increases with increasing the concentration of KOH solution. Cathodic polarizations change the chemical composition and retard the rate of film growth. Based on the ellipsometric and electrochemical data the chemical compositions of the formed films consisted of TiO2, Ti2O3, TiO2·H2O, Ti(OH)3 and TiOOH·nH2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pjescic J, Mentus S, Blagoevic N (2002) Mater Corros (1995) 53:44

    Article  CAS  Google Scholar 

  2. Arsmstrong R, Quinn R (1977) Surf Sci 67:451

    Article  Google Scholar 

  3. Shoesmith D, Ikeda B, Le Neveu D (1997) Corrosion (Houst, Tex) 53:820

    Article  CAS  Google Scholar 

  4. Azumi K, Seo M (2001) Corros Sci 43:553

    Google Scholar 

  5. Armstrong R, Harrison J, Thirsk H, Whifield R (1970) J Electrochem Soc 117:1003

    Article  Google Scholar 

  6. Hristova E, Arsov LJ, Popov B, White R (1997) J Electrochem Soc 144:2319

    Article  Google Scholar 

  7. Blackwood D, Greef R, Peter L (1989) Electrochim Acta 34:875

    Article  CAS  Google Scholar 

  8. Arsov LJ, Efremova A (1992) Electrochim Acta 37:2009

    Article  Google Scholar 

  9. Ohtsuka T, Masuda M, Sato N (1985) J Electrochem Soc 132:787

    Article  CAS  Google Scholar 

  10. Dyer C, Leach J (1978) J Electrochem Soc 125:23

    Article  CAS  Google Scholar 

  11. Schultze J, Schweinsberg M (1998) Electrochim Acta 43:2761

    Article  CAS  Google Scholar 

  12. Felske A, Badawy W, Plieth W (1990) J Electrochem Soc 137:1804

    Article  CAS  Google Scholar 

  13. Sanghi I, Visvanathan S (1962) Electrochim Acta 7:567

    Article  Google Scholar 

  14. McAller J, Peter M (1982) J Electrochem Soc 129:1252

    Article  Google Scholar 

  15. Prusi A, Arsov LJ (1991) Corros Sci 33(1):153

    Article  Google Scholar 

  16. Kelly E (1982) In: Bockris J, Conway B, White R (eds) Modern aspects in electrochemistry, vol 14. Plenum, New York, p 319

    Google Scholar 

  17. Bonilla S, Zinola C (1998) Electrochim Acta 43:423

    Article  CAS  Google Scholar 

  18. Muller A, Popkirov G, Schindler R (1992) Ber Bunsenges Phys Chem 96:1432

    Google Scholar 

  19. Tomcsanyi L, De Battisty A (1996) Electrochim Acta 41:291

    Article  Google Scholar 

  20. Torresi R, Camara O, De Pauli C, Giordano M (1987) Electrochim Acta 32:1291

    Article  CAS  Google Scholar 

  21. Herranen M, Carlsson J (2001) Corros Sci 43:365

    Article  CAS  Google Scholar 

  22. Marino C, De Oliviera E, Rocha-Filho R, Biaggio S (2001) Corros Sci 43:1465

    Article  CAS  Google Scholar 

  23. Thomas N, Nobe K (1970) J Electrochem Soc 117:622

    Article  CAS  Google Scholar 

  24. Suhotin A, Tungusova L (1971) Zashita Metallov 7:259

    Google Scholar 

  25. Arsov LJ (1985) Electrochim Acta 30(12):1645

    Article  CAS  Google Scholar 

  26. Arsova I, Prusi A, Arsov LJ (2003) J Solid State Electrochem 7:217

    CAS  Google Scholar 

  27. Torresi R, Camara O, De Pauli C (1987) Electrochim Acta 32:1357

    Article  CAS  Google Scholar 

  28. Efremova A, Arsov LJ (1992) J Phys II 2:1353

    Article  CAS  Google Scholar 

  29. Pourbaix M (1963) Atlas d’equilibres electrohim. Gauthier Villars, Paris

    Google Scholar 

  30. Shibata T, Zhu Y (1995) Corros Sci 37:253

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The Macedonian Ministry of Education and Science financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubomir Arsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prusi, A., Arsov, L. Influence of the cathodic polarization on the stability of Ti surface in concentrated KOH solutions. J Solid State Electrochem 11, 355–360 (2007). https://doi.org/10.1007/s10008-006-0148-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0148-5

Keywords

Navigation