Skip to main content

Advertisement

Log in

Oxygen transport and thermomechanical properties of SrFe(Al)O3-δ –SrAl2O4 composites: microstructural effects

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Measurements of oxygen permeation through dense \({\hbox{Sr}}_{{1 - x}} {\left( {{\hbox{Fe,Al}}} \right)}{\hbox{O}}_{{3 - \delta }} - {\hbox{SrAl}}_{{\text{2}}} {\hbox{O}}_{4}\) composite membranes showed a considerable influence of processing conditions on the surface exchange kinetics, while the bulk ambipolar conductivity is almost unaffected by microstructural factors. Compared to the materials prepared via the glycine–nitrate process (GNP), the surface limitations to oxygen transport are significantly higher for dual-phase \({\left( {{\hbox{SrFe}}} \right)}_{{0.7}} {\left( {{\hbox{SrAl}}_{{{2}}} } \right)}_{{0.3}} {\hbox{O}}_{{3.3 - \delta }}\) made of a commercial powder synthesized by spray pyrolysis. This difference in behavior may be related to compositional inhomogeneities in the grains of A-site deficient perovskite phase and an enhanced surface concentration of grain boundaries in the case of GNP-synthesized composite, which has also smaller grain size, slightly higher thermal expansion and lower total conductivity. No essential effects on Vickers hardness, varying in the range 6.3–6.5 GPa, were found. The deposition of porous catalyst layers onto the composite surface exposed to reducing environment leads to membrane decomposition. For the fabrication of tubular membranes, the cold isostatic pressing technique was, hence, combined with mechanical treatment to increase the specific surface area without incorporation of catalytically active components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Solid State Ionics 134:21

    Article  CAS  Google Scholar 

  2. Diethelm S, Sfeir J, Clemens F, Van herle J, Favrat D (2004) J Solid State Electrochem 8:611

    Article  CAS  Google Scholar 

  3. Pei S, Kleefisch MS, Kobylinski TP, Faber J, Udovich CA, Zhang-McCoy V, Dabrowski B, Balachandran U, Mieville RL, Poeppel RB (1995) Catal Letters 30:201

    Article  Google Scholar 

  4. Bahteeva JA, Leonidov IA, Patrakeev MV, Mitberg EB, Kozhevnikov VL, Poeppelmeier KR (2004) J Solid State Electrochem 8:578

    Article  CAS  Google Scholar 

  5. Mazanec TJ, Cable TL, Frye JG, Kliewer WR (1997) US Patent 5591315

  6. Kharton VV, Shaula AL, Snijkers FMM, Cooymans JFC, Luyten JJ, Yaremchenko AA, Valente AA, Tsipis EV, Frade JR, Marques FMB, Rocha J (2005) J Membr Sci 252:215

    Article  CAS  Google Scholar 

  7. Kharton VV, Yaremchenko AA, Shaula AL, Viskup AP, Marques FMB, Frade JR, Naumovich EN, Casanova JR, Marozau IP (2004) Defect Diffus Forum 226–228:141

    Article  Google Scholar 

  8. Yaremchenko AA, Kharton VV, Valente AA, Shaula AL, Marques FMB, Rocha J (2005) Solid State Ionics (in press)

  9. Christie GM, van Berkel FPF (1996) Solid State Ionics 83:17

    Article  CAS  Google Scholar 

  10. Kharton VV, Marques FMB (2002) Curr Opin Solid State Mater Sci 6:261

    Article  CAS  Google Scholar 

  11. Zhang K, Yang YL, Ponnusamy D, Jacobson AJ, Salama K (1999) J Mater Sci 34:1367

    Article  CAS  Google Scholar 

  12. Kharton VV, Naumovich EN, Kovalevsky AV, Viskup AP, Figueiredo FM, Bashmakov IA Marques FMB (2000) Solid State Ionics 138–135

  13. Diethelm S, Van herle J, Sfeir J, Buffat P (2005) J Eur Ceram Soc 25:2191

    Article  CAS  Google Scholar 

  14. Shaula AL, Viskup AP, Kharton VV, Logvinovich DI, Naumovich EN, Frade JR, Marques FMB (2003) Mater Res Bull 38:353

    Article  CAS  Google Scholar 

  15. Kharton VV, Kovalevsky AV, Yaremchenko AA, Figueiredo FM, Naumovich EN, Shaula AL, Marques FMB (2002) J Membr Sci 195:277

    Article  CAS  Google Scholar 

  16. Steele BCH (1995) Solid State Ionics 75:157

    Article  CAS  Google Scholar 

  17. Murphy MW, Armstrong TR, Smith PA (1997) J Am Ceram Soc 80:165

    Article  CAS  Google Scholar 

  18. Kharton VV, Yaremchenko AA, Naumovich EN (1999) J Solid State Electrochem 3:303

    Article  CAS  Google Scholar 

  19. West AR (1984) Solid state chemistry and its applications. Wiley, Chichester NY Brisbane

    Google Scholar 

  20. Hayashi H, Kanoh M, Quan CJ, Inaba H, Wang S, Dokiya M, Tagawa H (2000) Solid State Ionics 132:227

    Article  CAS  Google Scholar 

  21. Kharton VV, Kovalevsky AV, Tsipis EV, Viskup AP, Naumovich EN, Jurado JR, Frade JR (2002) J Solid State Electrochem 7:30

    Article  CAS  Google Scholar 

  22. Kharton VV, Waerenborgh JC, Viskup AP, Yakovlev SO, Patrakeev MV, Gaczyñski P, Marozau IP, Yaremchenko AA, Shaula AL, Samakhval VV (2006) J Solid State Chem (in press)

  23. Isupova LA, Yakovleva IS, Rogov VA, Alikina GM, Sadykov VA (2004) Kinet Catal 45:446

    Article  CAS  Google Scholar 

  24. Kharton VV, Yaremchenko AA, Tsipis EV, Valente AA, Patrakeev MV, Shaula AL, Frade JR, Rocha J (2004) Appl Catal A 261:25

    Article  CAS  Google Scholar 

  25. Bouwmeester HJM, Burggraaf AJ (1996) Dense ceramic membranes for oxygen separation. In: Burggraaf AJ, Cot L (eds) Fundamentals of inorganic membrane science and technology. Elsevier, Amsterdam, pp 435–528

    Chapter  Google Scholar 

  26. Hendriksen PV, Larsen PH, Mogensen M, Poulsen FW, Wiik K (2000) Catal Today 56:283

    Article  CAS  Google Scholar 

  27. Kharton VV, Yaremchenko AA, Valente AA, Sobyanin VA, Belyaev VD, Semin GL, Veniaminov SA, Tsipis EV, Shaula AL, Frade JR, Rocha J (2005) Solid State Ionics 176:781

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the FCT, Portugal (projects POCI/CTM/58570/2004, SFRH/BPD/15003/2004 and SFRH/BPD/11606/2002), and by the NATO Science for Peace program (project 978002). Experimental assistance of A. Shaula and I. Marozau is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kharton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharton, V.V., Kovalevsky, A.V., Yaremchenko, A.A. et al. Oxygen transport and thermomechanical properties of SrFe(Al)O3-δ –SrAl2O4 composites: microstructural effects. J Solid State Electrochem 10, 663–673 (2006). https://doi.org/10.1007/s10008-006-0141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0141-z

Keywords

Navigation