Skip to main content
Log in

Oxygen transport in La0.5Sr0.5Fe1−yTiyO3−δ (y=0.0, 0.2) membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of partial substitution of Fe with Ti on the oxygen transport properties of La1−x Sr x FeO3 membranes was investigated in view of their application for oxygen separation. Samples of composition \( La_{{0.5}} Sr_{{0.5}} {\text{Fe}}_{{1 - y}} {\text{Ti}}_{y} {\text{O}}_{{3 - \delta }} \) (y=0, 0.2) were prepared and their oxygen transport properties characterised by potential step relaxation and by oxygen permeation measurement in an air/argon gradient. With the first technique, chemical diffusion \({( {\widetilde{D}} )}\)and surface exchange (k S) coefficients were obtained by fitting of the current relaxation data to a single expression valid over the complete time range. The Ti-substituted composition gave slightly larger values of \({\widetilde{D}}\) and k S. The trend was opposite for the measured oxygen permeation flux. In the latter experience, ordering of oxygen vacancies was observed at lower temperature, reducing significantly the performance of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hammou A, Guindet J (1997) Solid oxide fuel cells. In: Gellings PJ, Bouwmeester HJM (eds) CRC handbook of solid state electrochemistry. CRC, Boca Raton, pp 413–420

    Google Scholar 

  2. Bouwmeester HJM, Burggraaf AJ (1997) Dense ceramic membranes for oxygen separation. In: Gellings PJ, Bouwmeester HJM (eds) CRC handbook of solid state electrochemistry. CRC, Boca Raton, pp 519–542

    Google Scholar 

  3. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Chem Lett 1743

  4. Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51

    Article  CAS  Google Scholar 

  5. Steele BCH (2000) Dense ceramic ion conducting membranes. In: Tuller HL (ed) Oxygen ion and mixed conductors and their technological applications, series E, vol 368. Nato ASI Series, pp 323–345

  6. Ullmann H, Trofimenko N (1999) Solid State Ion 119:1

    Article  CAS  Google Scholar 

  7. Patrakeev MV, Bahteeva JA, Mitberg EB, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (2003) J Solid State Chem 172:219

    Article  CAS  Google Scholar 

  8. ten Elshof JE, Bouwmeester HJM, Verweij H (1995) Solid State Ion 81:97

    Article  Google Scholar 

  9. ten Elshof JE, Bouwmeester HJM, Verweif H (1996) Solid State Ion 89:81

    Article  Google Scholar 

  10. Mizusaki M, Yoshihiro M, Yamauchi S, Fueki K (1985) J Solid State Chem 58:257

    Article  CAS  Google Scholar 

  11. Tsipis EV, Patrakeev MV, Kharton VV, Yaremchenko AA, Mather GC, Shaula AL, Leonidov IA, Kozhevnikov VL, Frade JR (2005) Solid State Ion 7:355

    CAS  Google Scholar 

  12. Diethelm S, Van herle J, Sfeir J, Buffat P (2004) Br Ceram Trans 103:147

    Article  CAS  Google Scholar 

  13. Hendriksen PV, Larsen PH, Mogensen M, Poulsen FW, Wiik K (2000) Catal Today 56:283

    Article  CAS  Google Scholar 

  14. Kharton VV, Shaula AL, Snijkers FMM, Cooymans JFC, Luyten JJ, Yaremchenko AA, Valente AA, Tsipis EV, Frade JR, Marques FMB, Rocha J (2005) J Membr Sci 252:215

    Article  CAS  Google Scholar 

  15. Fagg DP, Kharton VV, Frade JR, Ferreira AAL (2003) Solid State Ion 156:45

    Article  CAS  Google Scholar 

  16. Yaremchenko AA, Patrakeev MV, Kharton VV, Marques FMB, Leonidov IA, Kozhevnikov VL (2004) Solid State Ion 6:357

    CAS  Google Scholar 

  17. Atkinson A, Ramos TMGM (2000) Solid State Ion 129:259

    Article  CAS  Google Scholar 

  18. Belzner A, Gür TM, Huggins RA (1990) Solid State Ion 40/41:353

    Google Scholar 

  19. Diethelm S, Closset A, Nisancioglu K, Van herle J, McEvoy AJ, Gür TM (1999) J Electrochem Soc 146:2606

    Article  CAS  Google Scholar 

  20. Bucher E, Benisek A, Sitte W (2003) Solid State Ion 157:39

    Article  CAS  Google Scholar 

  21. Diethelm S, Van herle J (2004) Solid State Ion 174:127

    CAS  Google Scholar 

  22. Diethelm S, Sfeir J, Clemens F, Van herle J, Favrat D (2004) J Solid State Electrochem 8:611

    Article  CAS  Google Scholar 

  23. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford, p 60

    Google Scholar 

  24. Diethelm S, Closset A, Van herle J, Nisancioglu K (2002) J Electrochem Soc 149:E424

    Article  CAS  Google Scholar 

  25. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Univ. Press, London, p 70

    Google Scholar 

  26. den Otter MW, van der Haar LM, Bouwmeester HJM (2000) Solid State Ion 134:259

    Article  Google Scholar 

  27. den Otter MW, Bouwmeester HJM, Boukamp BA, Verweij H (2001) J Electrochem Soc 148:J1

    Article  Google Scholar 

  28. Maier J (1993) J Am Ceram Soc 76:1212

    Article  CAS  Google Scholar 

  29. Park CY, Jacobson AJ (2005) J Electrochem Soc 152:J65

    Article  CAS  Google Scholar 

  30. Kruidhof H, Bouwmeester HJM, v Dorn RHE, Burggraaf AJ (1993) Solid State Ion 63–65:816

    Article  Google Scholar 

  31. Grenier JC, Pouchard M, Hagenmuller P, Komornicki S (1980) Order–disorder phenomena in some oxygen-deficient perovskite-related ferrites. In: Proceedings of the international conference on ferrites, Japan, p 410

  32. Grenier JC, Menil F, Pouchard M, Hagenmuller P (1978) Mater Res Bull 13:329

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Swiss National Science Foundation (Project nos. 200021-100674/1 and 200020-109643/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Diethelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayraktar, D., Diethelm, S., Holtappels, P. et al. Oxygen transport in La0.5Sr0.5Fe1−yTiyO3−δ (y=0.0, 0.2) membranes. J Solid State Electrochem 10, 589–596 (2006). https://doi.org/10.1007/s10008-006-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0133-z

Keywords

Navigation