Skip to main content
Log in

Crafting La0.2Sr0.8MnO3-δ membrane with dense surface from porous YSZ tube

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work reports a new design of asymmetric tubular oxygen-permeable ceramic membrane (OPCM) consisting of a porous Y2O3 stabilized ZrO2 (YSZ) tube (with ∼1 μm of pore diameters and 31% porosity) as the support and a gas-tight mixed conductive membrane. The membrane has an interlocking structure composed of a host matrix, Ag(Pd) alloy (9:1 by wt) doped perovskite-type \( {\text{La}}_{{0.2}} {\text{Sr}}_{{0.8}} {\text{MnO}}_{{3 - \delta }} \) (LSM80, 90wt%), and the embedded constituent, pristine LSM80. The Ag(Pd) alloy component promotes not only electronic conductivity and mechanical strength but also reduction of both porosity and pore sizes in the layer (∼10-μm-thick) where it dopes. The porous structure in this layer could then be closed through a solution coating procedure by which ingress of an aqueous solution containing stoichiometric nitrate salts of La3+, Mn3+, and Sr2+ to the pore channels takes place first and the mixture of nitrate salts left after drying is subjected to pyrolysis to generate tri-metal oxides in situ. This is followed by calcinations at l,300 °C to consolidate the embedded trioxide and to cohere them with the Ag(Pd)-LSM80 host matrix. The structure formed is dubbed LSM80(S)-Ag(Pd)-LSM80, which was confirmed gas-tight by electron micrograph and N2 permeation test. Finally, we assess the chemical compatibility between LSM80 and YSZ at the sintering temperature by X-ray diffraction and electrochemical impedance analysis. The oxygen permeation of the fabricated LSM80(S)-Ag(Pd)-LSM80-YSZ membrane is within the temperature range of 600 to 900 °C. The tests reveal good compatibility between the LSM80 and YSZ and a reasonably high oxygen permeation flux in association with this OPCM assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tong J, Yang W, Cai R, Zhu B, Lin L (2002) Catal Letters 78:129

    Article  CAS  Google Scholar 

  2. Tablet C, Grubert G, Wang H, Schiestel T, Schroeder M, Langanke B, Caro J (2005) Catal Today 104:126

    Article  CAS  Google Scholar 

  3. Gu X, Jin W, Chen C, Xu N, Shi J, Ma YH (2002) AIChE J 48:2051

    Article  CAS  Google Scholar 

  4. Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò AS, Gullo LR, La Rosa D, Antonucci V (2005) J Power Sources 145:68

    Article  CAS  Google Scholar 

  5. Julbe A, Farrusseng D, Guizard C (2005) Catal Today 104:102

    Article  CAS  Google Scholar 

  6. Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ion 174:135

    Article  CAS  Google Scholar 

  7. Xia C, Liu M (2002) Solid State Ion 152–153:423

    Article  Google Scholar 

  8. Bhatt HD, Vedula R, Desu SB, Fralick GC (1999) Thin Solid Films 350:249

    Article  CAS  Google Scholar 

  9. Pollak C, Reichmann K, Hutter H (2002) Surf Coat Technol 150:119

    Article  CAS  Google Scholar 

  10. Kim BJ, Lee J, Yoo JB (1999) Thin Solid Films 341:13

    Article  CAS  Google Scholar 

  11. Kucharczyk B, Tylus W (2004) Catal Today 90:121

    Article  CAS  Google Scholar 

  12. Figueiredo FM, Kharton VV, Viskup AP, Frade JR (2004) J Membr Sci 236:73

    Article  CAS  Google Scholar 

  13. Armstrong T, Prado F, Manthiram A (2001) Solid State Ion 140:89

    Article  CAS  Google Scholar 

  14. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) J Membr Sci 172:177

    Article  CAS  Google Scholar 

  15. Bouwmeester HJM, Burggraaf AJ (1997) Dense ceramic membranes for oxygen separation. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, FL, pp 481–553

    Google Scholar 

  16. Liu M, Wang D (1995) J Mater Res 10:3210

    Article  CAS  Google Scholar 

  17. Balachandran U, Dusek JT, Sweeney SM, Poeppel RB, Mieville RL, Maiya PS, Kleefisch MS, Pei S, Kobylinski TS, Udovich CA, Bose AC (1995) Am Ceram Soc Bull 74:71

    CAS  Google Scholar 

  18. Mitchell BJ, Rogan RC, Richardson JW Jr, Ma B, Balachandran U (2002) Solid State Ion 146:313

    Article  CAS  Google Scholar 

  19. Jin W, Li S, Huang P, Xu N, Shi J (2001) J Membr Sci 185:237

    Article  CAS  Google Scholar 

  20. Xia C, Ward TL, Atanasova P, Schwartz RW (1998) J Mater Res 13:173

    Article  CAS  Google Scholar 

  21. Liu Y, Hong L (2003) J Membr Sci 224:137

    Article  CAS  Google Scholar 

  22. Hong L, Chua W (2002) J Membr Sci 198:95

    Article  CAS  Google Scholar 

  23. Middleton H, Diethelm S, Ihringer R, Larrain D, Sfeir J, Herle JV (2004) J Eur Ceram Soc 24:1083

    Article  CAS  Google Scholar 

  24. Lee TH, Yang YL, Jacobson AJ, Abeles B, Zhou M (1997) Solid State Ion 100:77

    Article  CAS  Google Scholar 

  25. Feduska W, Isenberg AO (1983) J Power Sources 10:89

    Article  CAS  Google Scholar 

  26. Ritchie JT, Richardson JT, Dan Luss (2001) AIChE J 47:2092

    Article  CAS  Google Scholar 

  27. Yang J, Jianbin L (2005) Sens Actuators A 121:103

    Article  Google Scholar 

  28. Wang ZJ, Kokawa H, Maeda R (2005) Acta Mater 53:593

    Article  CAS  Google Scholar 

  29. Zelinski BJJ, Uhlmann DR (1984) J Phys Chem Solids 45:1069

    Article  CAS  Google Scholar 

  30. Savaniu C, Irvine JTS (2002) Solid State Ion 150:295

    Article  CAS  Google Scholar 

  31. Wandekar RV, Wani BN, Bharadwaj SR (2005) Mater Lett 59:2799

    Article  CAS  Google Scholar 

  32. Ji Y, Kilner JA, Carolan MF (2005) Solid State Ion 176:937

    Article  CAS  Google Scholar 

  33. Jiang SP (2003) J Power Sources 124:390

    Article  CAS  Google Scholar 

  34. Tikhonovich VN, Kharton VV, Naumovich EN, Savitsky AA (1998) Solid State Ion 106:197

    Article  CAS  Google Scholar 

  35. Yin X, Hong L, Liu ZL (2005) J Eur Ceram Soc 25:3097

    Article  CAS  Google Scholar 

  36. Yin X, Hong L, Liu ZL (2005) J Membr Sci 268:2

    Google Scholar 

  37. Hong L, Guo F, Lin J (1999) Mater Res Bull 34:1943

    Article  CAS  Google Scholar 

  38. Chiang Y-M, Birnie III DP, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. Wiley, p 409

  39. Barbucci A, Carpanese P, Cerisola G, Viviani M (2005) Solid State Ion 176:1753

    Article  CAS  Google Scholar 

  40. Yang CCT, Wei WCJ, Andreas R (2003) Mater Chem Phys 81:134

    Article  CAS  Google Scholar 

  41. Brant MC, Dessemond L (2000) Solid State Ion 138:1

    Article  CAS  Google Scholar 

  42. Mitterdorfer A, Gauckler LJ (1998) Solid State Ion 111:185

    Article  CAS  Google Scholar 

  43. Sahu AK, Ghosh A, Suri AK, Sengupta P, Bhanumurthy K (2004) Mater Lett 58:3332

    Article  CAS  Google Scholar 

  44. Mitterdorfer A, Gauckler LJ (1999) Solid State Ion 117:203

    Article  CAS  Google Scholar 

  45. Zhang WF, Schmidt-Zhang P, Guth U (2004) Solid State Ion 169:121

    Article  CAS  Google Scholar 

  46. Jayaraj B, Desai VH, Lee CK, Sohn YH (2004) Mater Sci Eng A 372:278

    Article  Google Scholar 

  47. JØrgensen MJ, Primdahl S, Mogensen M (1999) Electrochim Acta 44:4195

    Article  Google Scholar 

  48. Leng YJ, Chan SH, Khor KA, Jiang SP (2004) Int J Hydrogen Energy 29:1025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X., Choong, C., Hong, L. et al. Crafting La0.2Sr0.8MnO3-δ membrane with dense surface from porous YSZ tube. J Solid State Electrochem 10, 643–650 (2006). https://doi.org/10.1007/s10008-006-0131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0131-1

Keywords

Navigation