Skip to main content
Log in

Mixed-conducting dense ceramic membranes for air separation and natural gas conversion

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Non-perovskite SrFeCo0.5O x (SFC2) was found to have high electronic and ionic conductivities as well as structural stability. At 800°C in air, total and ionic conductivities of 17 and 7 S·cm−1 were measured, respectively; the ionic transference number was calculated to be ≈0.4. This material is unique because of its high electronic conductivity and comparable electronic and ionic transference numbers. X-ray diffraction analysis showed that air-sintered SFC2 consists of three phase components, ≈75 wt% \({\text{Sr}}_{4} {\left( {{\text{Fe}}_{{1 - x}} {\text{Co}}_{x} } \right)}_{6} {\text{O}}_{{13 \pm \delta }}\), ≈20 wt% perovskite \({\text{Sr}}{\left( {{\text{Fe}}_{{1 - x}} {\text{Co}}_{x} } \right)}{\text{O}}_{{3 - \delta }}\), and ≈5 wt% rock salt CoO. Argon-annealed SFC2 contains brownmillerite Sr2(Fe1−x Co x )2O5 and rock salt CoO. Dense SFC2 membranes were able to withstand large pO2 gradients and retain mechanical strength. A 2.9-mm-thick disk membrane was tested in a gas-tight electrochemical cell at 900°C; an oxygen permeation flux rate ≈2.5 cm3(STP)·cm−2·min−1 was measured. A dense thin-wall tubular membrane of 0.75-mm thickness was tested in a methane conversion reactor for over 1,000 h. At 950°C, the oxygen permeation flux rate was ≈10 cm3(STP)·cm−2·min−1 when the SFC2 thin-wall membrane was exposed with one side to air and the other side to 80% methane balanced with inert gas. Results from these two independent experiments agreed well. The SFC2 material is a good candidate as dense ceramic membranes for oxygen separation from air or for use in methane conversion reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Keller GE, Bhasin MM (1982) J Catal 73:9

    Article  CAS  Google Scholar 

  2. Fierro JGL (1993) Catal Lett 22:67

    Article  CAS  Google Scholar 

  3. Hazbun EA (1988) US Patent 4791079, 13 Dec 1988

  4. Gur TM, Belzner A, Huggins RA (1992) J Membr Sci 75:151

    Article  CAS  Google Scholar 

  5. Cable TL (1990) European Patent EP 0399833 A1, 28 Nov 1990

  6. Teraoka Y, Zhang H, Furukawa S, Yamazoe N (1985) Chem Lett 1985:1743

    Article  Google Scholar 

  7. Teraoka Y, Zhang H, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51

    Article  CAS  Google Scholar 

  8. Nigara Y, Mizusaki J, Ishigame M (1995) Solid State Ionics 79:208

    Article  CAS  Google Scholar 

  9. Arashi H, Naito H, Nakata M (1995) Solid State Ionics 76:315

    Article  CAS  Google Scholar 

  10. Van Doorn RHE, Kruidhof H, Bouwmeester HJM, Burggraaf AJ (1991) Mater Res Soc Symp Proc 369:377

    Google Scholar 

  11. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Solid State Ionics 48:207

    Article  CAS  Google Scholar 

  12. Brinkman HW, Kruidhof H, Burgraaf AJ (1994) Solid State Ionics 68:173

    Article  CAS  Google Scholar 

  13. Balachandran U, Morissette SL, Dusek JT, Mieville RL, Poeppel RB, Kleefisch MS, Pei S, Kobylinski TP, Udovich CA (1993) Proceedings of Coal Liquefaction and Gas Conversion Contractors’ Review Conference, vol 1. In: Rogers S (ed) US Dept of Energy, Pittsburgh Energy Technology Center, pp 138–160

  14. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) J Membr Sci 172:177

    Article  CAS  Google Scholar 

  15. Li S, Jin W, Huang P, Xu N, Shi J, Lin YS (2000) J Membr Sci 166:51

    Article  CAS  Google Scholar 

  16. Vente JF, Haije WG, Rak ZS (2004) Inorganic membranes. In: Akin FT, Lin YS (eds) Proceedings of 8th International Conference on Inorganic Membranes. Admas Press, Chicago, pp 595–598

  17. Ma B, Park JH, Segre CU, Balachandran U (1995) Mater Res Soc Symp Proc 393:49

    CAS  Google Scholar 

  18. Pei S, Kleefisch MS, Kobylinski TP, Faber J, Udovich CA, Zhang-McCoy V, Dabrowski B, Balachandran U, Mieville RL, Poeppel RB (1995) Catal Lett 30:201

    Article  Google Scholar 

  19. Balachandran U, Dusek JT, Mieville RL, Poeppel RB, Kleefisch MS, Pei S, Kobylinski TP, Udovich CA, Bose AC (1995) Appl Catal A 133:19

    Article  CAS  Google Scholar 

  20. Li SG, Jin WQ, Huang P, Xu NP, Shi J, Hu ZC, Payzant EA, Ma YH (1999) AIChE J 45:276

    Article  CAS  Google Scholar 

  21. Yang L, Gu XH, Tan L, Jin WQ, Zhang LX, Xu NP (2001) Ind Eng Chem Res 41:4273

    Article  CAS  Google Scholar 

  22. Balachandran U, Kleefisch MS, Kobylinski TP, Morissette SL, Pei S (1994) International Patent WO96/24065

  23. Balachandran U, Dusek JT, Sweeney SM, Poeppel RB, Mieville RL, Maiya PS, Kleefisch MS, Pei S, Kobylinski TP, Udovich CA, Bose AC (1995) Am Ceram Soc Bull 74:71

    CAS  Google Scholar 

  24. Ma B, Balachandran U, Park JH, Segre CU (1996) J Electrochem Soc 143:1736

    Article  CAS  Google Scholar 

  25. Ma B, Balachandran U, Park JH, Segre CU (1996) Solid State Ionics 83:65

    Article  CAS  Google Scholar 

  26. Rietveld HM (1969) J Appl Crystallogr 2:65

    Article  CAS  Google Scholar 

  27. Larson AC, Dreele RB Von (1994) General Structure Analysis System, Los Alamos National Laboratory Internal Report No. 86–748 (1985–1994)

  28. Ma B, Hodges JP, Jorgensen JD, Miller DJ, Richardson JW Jr, Balachandran U (1998) J Solid State Chem 141:576

    Article  CAS  Google Scholar 

  29. JCPDS—International Centre for Diffraction Data, No. 9-402 and 6-615

  30. Guggilla S, Manthiram A (1997) J Electrochem Soc 144:L120

    Article  CAS  Google Scholar 

  31. Mitchell BJ, Richardson JW Jr, Ma B, Balachandran U (2002) J European Ceram Soc 22:661

    Article  CAS  Google Scholar 

  32. Nisancioglu K, Gur TM (1994) Solid State Ionics 72:199

    Article  CAS  Google Scholar 

  33. Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K (1988) J Solid State Chem 73:179

    Article  CAS  Google Scholar 

  34. Balachandran U, Dusek JT, Maiya PS, Ma B, Mieville RL, Kleefisch MS, Udovich CA (1997) Catal Today 36:265

    Article  CAS  Google Scholar 

  35. Maiya PS, Balachandran U, Dusek JT, Mieville RL, Kleefisch MS, Udovich CA (1997) Solid State Ionics 99:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at Argonne is supported by the U.S. Department of Energy, Federal Energy Technology Laboratory’s Gasification Technologies Program, under Contract W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. (Balu) Balachandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, U.(., Ma, B. Mixed-conducting dense ceramic membranes for air separation and natural gas conversion. J Solid State Electrochem 10, 617–624 (2006). https://doi.org/10.1007/s10008-006-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0126-y

Keywords

Navigation